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1 Introduction

There is a long tradition in monetary theory that emphasizes the role of wealth effects in

the monetary policy transmission mechanism. The importance of wealth effects, i.e., the

revaluation of financial and human wealth in response to changes in monetary policy, can

be traced back to classical economists, such as Pigou, as well as Keynesian economists,

such as Patinkin, Metzler, and Tobin.1 Keynes himself described in the General Theory the

effect of interest rate changes as follows:2

There are not many people who will alter their way of living because the rate of

interest has fallen from 5 to 4 per cent, if their aggregate income is the same as

before. [...] Perhaps the most important influence, operating through changes

in the rate of interest, on the readiness to spend out of a given income, depends

on the effect of these changes on the appreciation or depreciation in the price of

securities and other assets.

Even though wealth effects continued to permeate much of the monetary analysis follow-

ing Keynes, little is known about the importance of this channel in our modern frame-

works. In this paper, we provide a reassessment of such wealth effects in modern New

Keynesian models.

The paper derives three main results. First, in the context of a simple Representative

Agent New Keynesian (RANK) model, we propose a decomposition of the equilibrium

response of consumption to changes in nominal interest rates into three components: a

(general equilibrium) substitution effect, a wealth effect, and an interaction term captur-

ing the amplification of wealth effects. We find that a large fraction of the consumption

response is driven by wealth effects and their amplification term. Moreover, the initial re-

sponse of inflation is entirely driven by wealth effects, a result that sheds new light on the

mechanisms through which the central bank controls inflation in these models.

Second, we assess the quantitative importance of wealth effects in a medium-scale

DSGE model along the lines of Christiano et al. (2005). We find that, in the absence of

1See e.g. Pigou (1943), Metzler (1951), Patinkin (1965), and Tobin (1969).
2Book III, Chapter 8, Section II, of “The General Theory of Employment, Interest, and Money.”
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wealth effects, the DSGE model is unable to match the dynamics of consumption observed

in the data. This illustrates how the well-known quantitative success of such DSGE models

relies on their ability to generate sufficiently strong wealth effects. In RANK models, these

effects depend, generically, on the revaluation of public debt and the response of fiscal pol-

icy. We estimate such fiscal-based wealth effects in the data and find that they are several

times smaller than what is required by the model to match the observed consumption dy-

namics. Moreover, when we require the model to match the response of the value of public

debt and of the fiscal transfers observed in the data, the quantitative performance of the

DSGE model deteriorates significantly.

Because public assets cannot generate the required level of wealth effects, we next

consider the role of private assets. Private assets can affect the transmission mechanism

of monetary policy only if agents have heterogeneous marginal propensities to consume

(MPC), as otherwise any gain or loss to savers due to changes in interest rates would be

exactly offset by a corresponding loss or gain to borrowers, with no effect on aggregates.

Therefore, in our third main result, we introduce both heterogeneity and private assets in

the model and show that private wealth effects substantially amplify the response to mon-

etary policy. Our focus on the interaction of heterogeneous MPCs with a positive amount

of private debt contrasts with much of the literature on analytical HANK models, which

typically focuses on the case of zero liquidity.3 Furthermore, we show that introducing pri-

vate wealth effects significantly improves the ability of our quantitative model to match the

empirical response of consumption to monetary shocks, even when the model is required

to match the response of fiscal variables observed in the data.

We now consider each one of these results in detail. We begin by presenting a de-

composition of the response of the economy to changes in the path of the nominal interest

rate in the context of a standard RANK model in continuous time, in the spirit of Werning

(2012) and Cochrane (2017). Our decomposition consists of an extension of the standard

Slutsky decomposition to a general equilibrium setting. In partial equilibrium, a change

3See e.g., Broer et al. (2019) and Bilbiie (2018) for analytical HANK models with zero private liquidity.
Our result is closer to the one in Auclert (2019), who discusses the interaction of heterogeneous MPCs with
differences in interest rate exposures. However, while he presents a consumption decomposition in terms of
real interest rate and output, our results are expressed directly in terms of policy variables, namely nominal
interest rates and fiscal transfers.
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in relative prices triggers a change in the households’ consumption decisions through two

basic channels: a substitution effect and a wealth effect. In general equilibrium, however,

the wealth effect would affect inflation, changing intertemporal prices and affecting the

substitution effect. Therefore, in general equilibrium, the substitution and wealth effects

are intertwined, and it is important to explicitly take into account their interaction.

Our first main analytical result shows that, given a change in the path of the nomi-

nal interest rate, the path of consumption in all solutions to the system given by the Euler

equation and the New Keynesian Phillips Curve can be expressed as the sum of three com-

ponents: a general equilibrium substitution effect (GE-SE), which accounts for the change in

the consumption and inflation paths generated by the change in nominal interest rates,

keeping households’ wealth fixed; a wealth effect (WE), which accounts for changes in the

present value of the households’ labor and financial income, as well as changes in the

present value of fiscal transfers and in the value of public debt; and a general equilibrium

(GE) amplification, given by the product of the wealth effect and a GE multiplier, which

incorporates the general equilibrium interactions between price determination and house-

holds’ wealth. Moreover, this decomposition has a useful alternative interpretation. The

GE-SE is the unique solution to the RANK model in which households’ wealth does not

change; the WE and the GE amplification, then, incorporate the changes in the economy

triggered by variations in households’ wealth.

The decomposition provides new insights into several dimensions of the economic

mechanisms embedded in New Keynesian models. First, we identify a new interpreta-

tion of the source of the multiplicity of equilibria that plagues the RANK model with an

interest rate peg. We show that the GE multiplier is uniquely determined by the structural

parameters of the model, and the GE-SE is unique given a path of the nominal interest

rate. Thus, we can index all solutions to the RANK model by the level of wealth effect they

generate. In this sense, we can interpret the Taylor rule as selecting a particular level of

the equilibrium wealth effect. In particular, we show that, under standard parametriza-

tions, the Taylor rule equilibrium selects the unique purely forward-looking solution of the

system. Moreover, the Fiscal Theory of the Price Level (FTPL), in the version with sticky

prices, differs from the equilibrium with a Taylor rule only in the determination of the
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wealth effect. Therefore, our approach can handle both active monetary and active fiscal

policy equilibria in an unified way.4

Second, the interaction of the WE with the general equilibrium determination of prices

may be quantitatively important, even when the WE itself has only a minor effect on equi-

librium consumption. The GE multiplier is positive when prices are sticky and can be

quantitatively large. For a standard calibration of the simple model, the WE is amplified

by more than twenty times in general equilibrium. In the case of the Taylor rule equilib-

rium, for instance, we find that the WE is quantitatively small, but the GE amplification, the

product of the WE and GE multiplier, accounts for 55% of the total consumption response.5

Third, we show that a similar decomposition holds for inflation. Interestingly, we find

that initial inflation is proportional to the wealth effect and is not affected by the GE-SE.

That is, what generates a drop in current inflation is the fact that average consumption

decreases, rather than the change in the timing of consumption. This result might have

important consequences for policy design, since it implies that, according to RANK, policy

needs to make households poorer in order to lower inflation, while changing the timing of

their consumption is irrelevant to the short-run response of inflation.

Fourth, we show that if monetary policy has fiscal consequences (that is, if it affects ei-

ther tax revenues or the cost of servicing public debt) then the wealth effect is proportional

to the sum of the change in the value of public bonds and the present value of government

transfers, after the endogenous response of profits and wages are taken into account. This

result provides a one-to-one mapping between the level of wealth effects in RANK models

and the response of fiscal variables, and it provides a novel testable implication.

Next, we take the implications of the decomposition to the data and quantify the impor-

tance of wealth effects. We do this in steps. First, we estimate the impulse-response func-

tions (IRFs) to a monetary shock using the standard recursiveness assumption proposed by

Christiano et al. (2005).6 The innovation of our approach is that we include fiscal variables

in the VAR system to capture the fiscal response to a monetary shock. By doing this, we

4For a discussion of policy regimes and FTPL, see Sims (1994), Woodford (1995), and Cochrane (2001).
5This is consistent with the finding by Kaplan et al. (2018) that the indirect effect, which is related to the

WE, is quantitatively small in the purely forward-looking solution to the New Keynesian model. For the
relationship between direct/indirect effects and substitution/wealth effects, see Section 2.5.

6See Christiano et al. (1999) for a detailed exposition of this strategy.
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obtain an estimate of the counterpart of the lump-sum transfers in the model. Second, we

estimate a cashless version of Christiano et al. (2005) by impulse-response matching. Im-

portantly, we estimate the model assuming that monetary policy follows a standard Taylor

rule. In this sense, our estimated model belongs to the strand of literature that assumes

an active-monetary/passive-fiscal regime. Our estimation generates parameter values that

are in line with those obtained in Christiano et al. (2005) and impulse responses that are

roughly consistent with those estimated in the data. We then extend our analytical decom-

position to the DSGE model and show that WE and its amplification in general equilibrium

accounts for more than 80% of the consumption response in our estimated model. There-

fore, to match the empirical IRFs, it is crucial that the model generates a sufficient level of

wealth effect. Finally, using a calibrated version of the government’s budget constraint, we

are able to recover the implied fiscal response that is necessary to sustain the consumption

level predicted by the model.

With all these elements, we are able to evaluate the quantitative performance of the

model. First, we show that the fiscal response we obtain from the data is (statistically) sig-

nificantly lower than the one implied by the model. That is, to generate impulse responses

that are close to their counterparts in the data, the model requires a fiscal response that is

higher than the one estimated in the data. Moreover, the magnitude of the fiscal response

in the model is almost 5 times larger than the one obtained in the data. Given that the

vast majority of the consumption response in the model can be accounted for by the GE

amplification, this result suggests that the quantitative performance of the model relies on

a counterfactual fiscal response.

The importance of these fiscal-based wealth effects can be more clearly seen by consid-

ering the following exercise. We plug into the model the estimated impulse response func-

tions of policy variables, i.e., nominal interest rate, taxes, and transfers. That is, we drop the

Taylor rule and force the model to exactly match the IRFs for policy variables estimated in

the data. This way, the wealth effect generated by the model will be, by construction, con-

sistent with the response of fiscal variables in the data. We then calculate the equilibrium of

the economy. We find a dramatic change in the model’s predictions, as it now fails to match

the data. For instance, while initially the model was generating a recession in response
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to a contractionary monetary policy shock, it now generates a boom, inconsistent with the

pattern observed empirically. By imposing the constraint that the implied fiscal response

is consistent with the data, the initial success of the model turned into a severe failure. This

result illustrates how considering the different mechanisms through which monetary pol-

icy affects the economy, instead of simply considering monetary policy’s overall effect, can

be useful in disciplining the theory empirically.

We next consider the role of private wealth effects in a borrower-saver economy. Savers

are unconstrained in equilibrium, while borrowers consume their income net of interest

payments on the debt. Importantly, nominal interest rates now affect aggregate consump-

tion directly through their impact on the cost of servicing private debt. We start by provid-

ing a characterization of the aggregate dynamics of the economy and show that aggregate

consumption satisfies a generalized Euler equation. We then extend our decomposition

to the economy with heterogeneous agents. Wealth effects can now be decomposed into

two components: an average wealth effect, which is determined by fiscal variables as in

the RANK model, and a private wealth effect, which depends on the amount of private debt

and on the path of nominal interest rates. Private wealth effects substantially amplify the

impact of monetary policy. Compared with an economy with zero liquidity, we find that

introducing private debt raises the initial response of consumption to changes in nominal

interest rates by 50% in a calibrated example. Moreover, private wealth effects now account

for 53% of the total consumption response. Finally, we introduce heterogeneous agents and

private assets in our quantitative DSGE model. We maintain the constraint that the model

must match the response of the fiscal variables observed in the data. The ability of the

model to match the dynamics of consumption improves substantially, generating a decline

in consumption in response to a monetary tightening in line with the decline estimated in

the data.

Literature review. Our emphasis on wealth effects reflects a long tradition in monetary

economics. Pigou (1943) relied on a wealth effect, through the revaluation of money bal-

ances, to argue that full employment could be reached even in a liquidity trap. Kalecki

(1944) pointed out that these effects apply only to government liabilities, as the impacts of
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inside assets cancel out in the aggregate, implicitly assuming no heterogeneity in MPCs.

The Pigou effect is then consistent with our formulation of the FTPL, which also focus

on government bonds.7 Keynesian economists criticized the Pigou effect for being likely

small empirically, consistent with our empirical results on fiscal-based wealth effects. To-

bin (1982) explicitly defended the idea that private debt was likely much more important

in an economy with heterogeneous MPCs, echoing our results on private wealth effects.

Our paper is related to the literature studying the transmission mechanism of mone-

tary policy in RANK and HANK models.8 Kaplan et al. (2018) proposes a decomposition in

terms of direct and indirect effects, which we discuss in detail in Section 2.5. Auclert (2019)

decomposes the response of consumption into substitution and wealth effects in an econ-

omy with rich heterogeneity. In contrast to our results, his decomposition is expressed in

terms of aggregate output and the real interest rate. Our decomposition instead is in terms

of policy variables, i.e. nominal interest rates and fiscal transfers. Broer et al. (2019) and

Rupert and Šustek (2019) also focused on the transmission mechanism of New Keynesian

models, but they do not emphasize the role of substitution and wealth effects.

An important distinction between the analysis in this paper and much of the HANK

literature is our focus on macro channels of monetary policy transmission rather than their

micro counterpart. Micro channels refer to economic forces that operate at the individual

level, while macro channels do so on aggregate variables. As Werning (2015) shows, one

can construct HANK models in which the monetary policy transmission at the individual

level (i.e., the micro channels) is substantially different from that in the RANK (emphasiz-

ing the importance of income effects by breaking the permanent income hypothesis), while

at the same time aggregate variables behave as-if they were generated by a representative

agent, thus generating no change at the aggregate level (i.e., the macro channels). In our

HANK model, we emphasize the interaction between heterogeneous MPCs and positive

debt in generating stronger macro channels that generate quantitative results closer to the

data.
7For a discussion of the Pigou effect, see Patinkin (1948). The importance of wealth effects from govern-

ment bonds were questioned by Barro (1974) in the context of a real economy. While in real economies any
changes in the value of government bonds must necessarily be offset by changes in taxes, this is not the case
in monetary economies. See e.g. Woodford (1998).

8See also a recent literature on housing wealth effects, e.g., Berger et al. (2017) and Guren et al. (2018).
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Our work is also related to the literature on analytical HANK models, such as Werning

(2015), McKay et al. (2017), Debortoli and Galí (2017), Acharya and Dogra (2018), Bilbiie

(2018), and Bilbiie (2019). Much of the literature focuses on the case of zero private liquid-

ity and idiosyncratic income risk, while we focus on the complementary case of positive

private liquidity and no idiosyncratic income risk.9 The presence of private debt generates

a compounding Euler equation, i.e., current consumption responds more strongly to future

interest rate changes than with the standard Euler equation. The emphasis on private debt

is also shared by Eggertsson and Krugman (2012) and Benigno et al. (2019).

Finally, our paper is related to the literature on monetary-fiscal interactions; see e.g.,

Cochrane (2017) and Cochrane (2019) and the review by Leeper and Leith (2016). Consis-

tent with our results, the intuition behind FTPL models is usually expressed in terms of

wealth effects. Our results, however, do not rely on a particular fiscal rule and hold for

either passive or active monetary regimes.

2 A General Equilibrium Decomposition of Consumption

In this section, we consider a simple RANK in continuous time. The model is based on

Werning (2012) and Cochrane (2017), augmented to incorporate fiscal variables and explic-

itly account for the households’ budget constraint. The main result of this section presents

a decomposition of the response of consumption to a monetary policy shock that is an ex-

tension of the Slutsky equation to a general equilibrium environment. We then use this

decomposition to quantify the importance of wealth effects in the general equilibrium of

the economy.

We study the dynamic response of an economy that is hit by a monetary shock, result-

ing in a deviation of the path of nominal interest rates from its steady-state level and a

simultaneous response of the fiscal authority. We analyze the reaction of the economy to

the resulting equilibrium paths of the nominal interest rate and fiscal variables. By focusing

the analysis on the equilibrium paths of policy variables, we are able to obtain results that

are robust to any monetary/fiscal regime that generates such paths.

9Acharya and Dogra (2018) allows for positive private liquidity, but abstracts from heterogeneous MPCs.
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2.1 The Model

Environment. Time is continuous and denoted by t ∈ R+. The economy is populated by

a large number of identical, infinitely-lived households and a government. There is also a

continuum of mass one of firms that produce a differentiated good using labor as the only

factor of production. Households’ preferences are such that consumption is a CES aggrega-

tor of the purchases of each of the differentiated goods. The government chooses the path

of the nominal interest rate, levies proportional sales taxes, issues short-term nominal debt

(which is in positive net supply in steady state) and distributes lump-sum transfers (which

are allowed to be negative).10 As is standard in the literature, we log-linearize the model

around its zero inflation steady-state equilibrium and consider the first-order approxima-

tion of the response to exogenous shocks.

Given a path of interest rates {it}∞
t=0 and transfers {Tt}∞

t=0, the log-linearized solution

of the model can be characterized by four equations: an intertemporal Euler equation

ċt = σ−1(it − πt − ρ), (1)

a New Keynesian Phillips Curve

π̇t = ρπt − κct, (2)

the households’ intertemporal budget constraint

∫ ∞

0
e−ρtctdt =

∫ ∞

0
e−ρt [(1− τ)yt + b(it − πt − ρ) + Tt] dt, (3)

and the resource constraint

ct = yt, (4)

where ct and yt denote, respectively, the percentage difference between actual consumption

and output and their corresponding levels in a steady state, c and y; πt denotes the inflation

rate; it denotes the nominal, short-term, risk-free interest rate; σ denotes the inverse of
10In this paper, we abstract from government spending. Given our focus on monetary policy shocks, we

follow the literature and assume that there is no response of government spending to changes in monetary
policy.
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the intertemporal elasticity of substitution; ρ denotes the households’ subjective discount

factor; κ is the slope of the Phillips curve; τ is the steady-state rate of proportional sales

taxes; and b is the steady-state level of short-term nominal debt.

Since our analysis emphasizes the role of the households’ budget constraint in the dy-

namic behavior of consumption, it is useful to briefly describe its components. The left-

hand side of equation (3) is the present value of consumption, discounted at the steady-

state real interest rate. The right-hand side contains the sources of income: the after-tax

profits and wages, which combined equal (1− τ)yt, the interest from financial assets, and

government’s lump-sum transfers.11 There are two channels through which fiscal vari-

ables affect the budget constraint of the households. First, they affect non-interest income

through τ and Tt. Second, the level of government debt determines the households’ expo-

sure to real interest rate changes. While changes in the real interest rate affect the present

discounted value of both consumption and after-tax income, in a representative-agent

economy the net impact depends only on the steady-state level of government debt.12

Role of policy rules. As mentioned above, our exercise focuses on the paths of policy

variables and studies the channels through which these paths affect equilibrium dynamics.

This exercise differs from the standard approach in the literature, which typically assumes

monetary and fiscal rules and then determines the equilibrium path of policy variables

endogenously. A popular approach is to assume that monetary policy follows an interest

rate rule of the form

it = ρ + φπt + εt, (5)

where φ > 1 and εt represents an innovation of the rule relative to its systematic response

to inflation. Fiscal policy is assumed to be passive or Ricardian, and the exogenous mone-

tary shock is represented by a path for {εt}∞
t=0 rather than a path for the nominal interest

11We have assumed that the proportional taxes {τt}∞
t=0 are fixed at their steady-state level. Since changes

in proportional taxes are not a channel emphasized in the monetary policy literature, we abstract from it in
this paper.

12Formally, the impact of changes in the interest rate on the present discounted value of consumption is
− c

ρ

∫ ∞
0 e−ρt(it−πt− ρ)dt, and the corresponding impact on after-tax income is− (1−τ)y+T∗

ρ

∫ ∞
0 e−ρt(it−πt−

ρ)dt, T∗ being the steady-state transfers. Combining the two and using c = (1− τ)y + T∗ + ρb, we obtain∫ ∞
0 e−ρtb(it − πt − ρ)dt.
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rate.13 Under these assumptions, equation (3) is often dropped when finding an equilib-

rium of the economy because transfers {Tt}∞
t=0 are assumed to automatically adjust so that

the government’s budget constraint is satisfied for any path of the endogenous and ex-

ogenous variables.14 Since lump-sum transfers do not affect any of the other equations

characterizing equilibrium, they represent a free variable that adjusts to guarantee that any

solution to the system given by (1), (2) and (5) is an equilibrium of the economy.

An alternative approach would be to follow the Fiscal Theory of the Price Level (FTPL)

to specify an exogenous path for the fiscal transfers {Tt}∞
t=0 and assume an interest rule

(5) with φ < 1, corresponding to an active fiscal regime. Despite the stark differences be-

tween the two approaches, our formulation is consistent with both. The determination of

the paths of policy variables, {it}∞
t=0 and {Tt}∞

t=0, depends on the specific monetary/fiscal

regime in place. By analyzing the impact of the policy variables directly on consump-

tion and inflation, we are able to bypass the debate on the correct monetary/fiscal policy

regime and obtain results about the monetary policy transmission channels that are robust

to different regimes.

Dynamic system. The system of differential equations (1)-(2) can be written as

 ċt

π̇t

 =

 0 −σ−1

−κ ρ

 ct

πt

+

 σ−1(it − ρ)

0

 .

The eigenvalues of the system above are given by

ω =
ρ +

√
ρ2 + 4σ−1κ

2
> 0, ω =

ρ−
√

ρ2 + 4σ−1κ

2
< 0.

Note that the system has one positive and one negative eigenvalue. Focusing on bounded

solutions, we need one additional condition to determine equilibrium. We show below

that, generically, knowledge of {it}∞
t=0 and {Tt}∞

t=0 is enough to pin down a solution.

13Note that Ricardian equivalence holds in this model regardless of the monetary/fiscal regime, so only
the present value of transfers,

∫ ∞
t=0 e−ρtTtdt, rather than the whole path, {Tt}∞

t=0, matters for the equilibrium.
14See e.g., Woodford (2011) for a discussion.
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2.2 Consumption Decomposition: Substitution and Wealth Effects

We consider next the different channels through which changes in nominal interest rates

affect consumption. The main result of this section decomposes consumption into three

terms: a general-equilibrium substitution effect (GE-SE), a wealth effect (WE), and a general-

equilibrium (GE) amplification. Moreover, we show that the multiplicity of solutions that

plagues the New Keynesian system can be indexed by the amount of WE each solution

generates. This exercise provides a formal characterization of the monetary policy trans-

mission mechanism in the standard RANK model.

Substitution and wealth effects. We begin by defining two objects that represent the core

of the characterization that follows. First, for a given path of the nominal interest rate and

inflation, {it, πt}∞
t=0, the households’ Hicksian demand is given by

cH
t ≡ σ−1

∫ t

0
(is − πs − ρ)ds− σ−1

∫ ∞

0
e−ρs(is − πs − ρ)ds. (6)

Equation (6) is the log-linear approximation of the solution to the minimization of a house-

hold’s expenditures subject to achieving at least the steady-state level of utility.15 In this

setting, the different goods are consumption at different dates, and the price of one unit of

consumption at date t is e−
∫ t

0 (is−πs)ds. An important property of the Hicksian demand is

that the total cost of the bundle {cH
t }∞

t=0 evaluated at steady-state prices is zero, that is

∫ ∞

0
e−ρtcH

t dt = 0. (7)

The Hicksian demand will be tightly connected to the substitution effect in general equi-

librium.

The second object is the average consumption, which is given by

C ≡ ρ
∫ ∞

0
e−ρtctdt = ρ

∫ ∞

0
e−ρt [(1− τ)yt + b(it − πt − ρ) + Tt] dt. (8)

Average consumption is the consumption path that would prevail if the households were

15See Appendix B for the details of the derivation.
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forced to a constant consumption path while still satisfying their budget constraint.

From the standard properties of a Marshallian demand system, consumption can be

written as

ct = cH
t + C. (9)

The expression above corresponds to a (log-linear) version of the Slutsky decomposition

of consumption, extended to allow for simultaneous changes in prices and income in all

periods. In partial equilibrium, the first component corresponds to the substitution effect,

which captures the impact of interest rate changes on the timing of consumption, while the

second component corresponds to the wealth effect, which captures the effect on the level

of consumption. In general equilibrium, however, these two terms are not independent

of each other. A positive wealth effect, for instance, would generate inflation and change

intertemporal prices, affecting the timing of consumption and the substitution effect. To

disentangle the two effects, we propose the following definition of the general-equilibrium

substitution effect.

Definition 1 (General-Equilibrium Substitution Effect (GE-SE)). The general-equilibrium

substitution effect is the Hicksian demand evaluated at the equilibrium path of nominal rates,

{it}∞
t=0, and the inflation induced by the substitution effect, {πS

t }∞
t=0. That is, {cS

t , πS
t }∞

t=0 is the

solution to the following system of equations

cS
t = σ−1

∫ t

0
(is − πS

s − ρ)ds− σ−1
∫ ∞

0
e−ρs(is − πS

s − ρ)ds, (10)

πS
t = κ

∫ ∞

t
e−ρ(s−t)cS

s ds. (11)

where (10) is the Hicksian demand evaluated at {it, πS
t }∞

t=0 and (11) is the New Keynesian Philips

curve integrated forward.

The GE-SE corresponds to the solution to the fixed-point problem given by the Hicksian

demand evaluated at a path of inflation that is itself consistent with the Hicksian demand.

Definition 1 allows the substitution effect to incorporate the feedback between the house-

holds’ decisions and the general equilibrium determination of prices in the economy, but

only through interactions arising from the dynamics of the Hicksian demand. Moreover,
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the GE-SE has properties that connect it to the original RANK system given by (1)-(2). Since

the consumption bundle prescribed by the Hicksian demand has zero cost (relative to the

steady-state bundle; see equation (7)), the GE-SE is the solution to the system of equations

(1)-(2), imposing no change in the households’ wealth.

Lemma 1. The solution to (10)-(11) is the unique solution to the system given by (1)-(2) and

∫ ∞

0
e−ρtctdt = 0.

Thus, we could have alternatively defined the GE-SE as the solution to the RANK sys-

tem of differential equations that keeps the households’ wealth unchanged. More impor-

tantly, Lemma 1 establishes that the GE-SE generates a unique path for the Hicksian de-

mand.

Next, we present the main result of this section. Proposition 1 shows how to decompose

equilibrium consumption into substitution and wealth effects that resemble the standard

decomposition in consumer theory, augmented to account for general equilibrium effects.

Proposition 1 (Consumption Decomposition in General Equilibrium). Given an equilibrium

path for the nominal interest rate, {it}∞
t=0, all bounded solutions to the system (1)-(2) generate a

path of consumption that can be written as

ct = cS
t︸︷︷︸

GE-SE

+ C︸︷︷︸
wealth effect

+

GE multiplier︷ ︸︸ ︷(
ω

ρ
eωt − 1

)
×C︸ ︷︷ ︸

GE amplification

,

where cS
t is given by (10), and C is given by (8).

In t = 0, the GE multiplier is weakly positive, and strictly so if κ > 0.

The equilibrium response of consumption to a monetary shock can be decomposed into

three terms. The first term is the GE-SE. A change in the nominal interest rate represents

a change in the relative price of consumption today relative to tomorrow. A household’s

response to this change corresponds to the substitution effect: an increase in interest rates

leads the household to shift consumption from the present to the future, while keeping
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FIGURE 1: Decomposition of the consumption response to a nominal interest rate change
Calibration: σ = 1, κ = 0.09, ρ = 0.01. Half-life of nominal interest rate is four months. The solution
corresponds to the unique forward-looking equilibrium.

the total cost of the bundle fixed. The GE-SE incorporates the effects that the Hicksian

demand has on the determination of prices, as specified by the New Keynesian Phillips

curve (11). It is, thus, in this sense a general-equilibrium substitution effect. The second

term is the wealth effect. The change in the path of the nominal interest rate impacts the

household’s average consumption, as the change in interest rates implies a revaluation

of the household’s after-tax financial and human wealth. The third term shows that the

wealth effect can be amplified in general equilibrium. When the household feels richer and

increases its consumption, it puts upward pressure on inflation. For a given equilibrium

path of the nominal interest rate, the increase in inflation reduces the real interest rate,

further stimulating the economy. This effect is captured by the product of the wealth effect

and a term that depends only on parameters of the model, which we call the GE multiplier.

In order to determine the quantitative importance of each component, we present a nu-

merical example in Figure 1. The solid lines represent the equilibrium paths of the nominal

interest rate (Panel A) and the household’s consumption (Panel B). We depicted a standard

equilibrium in which an increase in the nominal interest rate generates a reduction in the

path of consumption.16 Panel B also decomposes the equilibrium response of consumption

into the components defined in Proposition 1. All components of consumption are nega-

tive on impact. In terms of their contribution to the total response, we find that the GE-SE

accounts for 43% of the total response, the wealth effect accounts for 2% and the GE ampli-

16In Figure 1, we focus on the unique forward-looking solution to the system (1)-(2), which coincides with
the standard Taylor equilibrium, as shown in Lemma 2 below.
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fication accounts for 55%. That is, less than half of the total response of consumption can be

attributed to the intertemporal substitution channel, while the direct role of the wealth effect is

marginal. The small impact of the wealth effect on equilibrium consumption is consistent

with the fact that the representative household in the model conforms to the permanent

income hypothesis: changes in the household’s wealth get smoothed out over time, and

their impact on any given period is proportional to the discount rate ρ, which is typically

small. However, the wealth effect gets magnified by the GE multiplier, to the point that

the GE amplification accounts for more than half of the total response. That is, even in

the RANK model, the wealth effect plays a substantial role, though indirectly, through

powerful endogenous amplification mechanisms. Section 3 revisits this decomposition in

a medium-scale DSGE version of the model.

Next, we provide some insights about the source of multiplicity in the New Keynesian

model.

Corollary 1.1. Given a path for the nominal interest rate, {it}∞
t=0, all bounded solutions to the

system (1)-(2) generate the same GE-SE and GE multiplier.

The decomposition in Proposition 1 characterizes all the bounded solutions to the sys-

tem (1)-(2) for a given path of the nominal interest rate. Corollary 1.1 establishes that all

these solutions produce the same GE-SE and GE multiplier. This result provides a new

perspective on the multiplicity of equilibria of the New Keynesian model under an interest

rate peg. Corollary 1.1 implies that all solutions of the New Keynesian model under an in-

terest rate peg can be indexed by their effect on average consumption, that is, by the level

of wealth effect they generate. In this sense, the standard Taylor rule equilibrium and the

FTPL are ways of selecting a particular level of wealth effect.17 We next consider the Taylor

rule equilibrium in detail.

Wealth effects in the Taylor rule equilibrium. Consider the interest rate rule (5) with

φ ∈
[
1, 1 + ρ2

4κσ−1

)
.18 We say that a sequence of monetary shocks {εt}∞

t=0 decays sufficiently

17This interpretation is valid conditional on these rules producing the same equilibrium path for the nom-
inal interest rate. In more general settings, the two rules could potentially have different implications for the
equilibrium path of the interest rate, and hence, for the decomposition.

18We restrict the values of φ in order to obtain real valued eigenvalues.
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fast if εt = O(e−θt), where θ > |ω|. Under this assumption, the Taylor rule equilibrium is

the unique purely forward-looking solution of the New Keynesian system.19

Lemma 2. Suppose the equilibrium path of the nominal interest rate, {it}∞
t=0, was generated by

an interest rule that satisfies the Taylor principle, given a sequence of shocks {εt}∞
t=0 that decays

sufficiently fast. Then, the equilibrium path of consumption is the unique purely forward-looking

solution to the system (1)-(2), that is,

ct = −
σ−1

ω−ω

∫ ∞

t

(
ωe−ω(s−t) −ωe−ω(s−t)

)
(is − ρ) ds.

The corresponding wealth effect is

C = − σ−1ρ

ω−ω

∫ ∞

0

(
e−ωt − e−ωt

)
(it − ρ) dt.

Lemma 2 shows how consumption responds to changes in the nominal interest rate

in the Taylor rule equilibrium.20 Two features of the solution are particularly relevant.

First, the Taylor rule solution corresponds to the unique purely forward-looking solution

to the system (1)-(2). Note that the substitution effect on date t depends on both past and

future interest rates. Moreover, the wealth effect can depend, in principle, on the entire

path of nominal interest rates. Therefore, the solution to the system (1)-(2) has, in general,

both backward-looking and forward-looking components. There is a unique value of C,

however, such that the effect of past interest rates on the substitution effect and on the

sum of the wealth effect and GE amplification cancel out exactly, and this corresponds to

the Taylor rule solution. Second, an increase in nominal interest rates leads to a decline

in consumption on all dates, as can be seen also in Figure 2. An increase in interest rates

implies, then, a negative wealth effect under a Taylor rule.

The importance of wealth effects for the Taylor rule equilibrium can be seen by compar-

ing it with the GE-SE. As can be seen in Panel A of Figure 2, the same path of interest rates

now generates a decline in consumption in the first year and a small boom afterwards, such

19The condition θ > |ω| guarantees that a positive monetary shock leads to an increase in the nominal
interest rate, as in standard calibrations of the New Keynesian model.

20The nominal interest rate is, of course, endogenous under a Taylor rule. The expression in the lemma is
to be interpreted as a restriction on the joint behavior of consumption and nominal interest rates.
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FIGURE 2: Consumption and inflation under different values for the wealth effect
Calibration: σ = 1, κ = 0.09, ρ = 0.01, and τ = 0.25. Public debt is set to 100% of GDP and the duration of
long-term bonds is set to five years. Half-life of nominal interest rate is four months.

that the average level of consumption does not change. Another important distinction is

that the consumption under the GE-SE has both backward-looking and forward-looking

components. Therefore, the economy does not go immediately to steady state if the nom-

inal interest rate returns to its steady-state level. The differences between the Taylor rule

equilibrium and GE-SE become even starker when we consider the behavior of inflation,

to which we turn next.

2.3 The Determinants of Inflation

Proposition 1 presents the decomposition of consumption into a substitution effect, a wealth

effect, and an interaction term. There is a similar decomposition of inflation.

Proposition 2 (Inflation Decomposition). In the bounded solutions to the system (1)-(2), infla-

tion is given by

πt = πS
t +

κ

ρ
eωtC, (12)

where {πS
t }∞

t=0 is the solution to (10)-(11), and C is the average consumption as defined in (8).

In t = 0,

π0 =
κ

ρ
C.

The decomposition uncovers an important result: inflation in period 0 is completely

determined by the wealth effect rather than by the substitution effect. That is, inflation on
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impact does not depend on the change in initial consumption, but on whether the house-

holds’ lifetime consumption is on average higher or lower after the shock. Initial inflation

depends on whether households are richer or poorer rather than on the timing of the con-

sumption path.

To understand this result, it is important to note the forward-looking nature of the

New Keynesian Phillips Curve, which depends only on the net present value of future con-

sumption for the determination of inflation today. Since the present value of the Hicksian

demand is zero, initial inflation is determined solely by the wealth effect. In particular, the

old-Keynesian view that lowering consumption in a period is enough to lower inflation in

that period does not apply to New Keynesian environments.

Hence, we have that πS
0 = 0 regardless of the path or magnitude of the nominal interest

rates. In the absence of wealth effects, the monetary authority is unable to control initial

inflation. Moreover, inflation has Neo-Fisherian features under the GE-SE, as an increase in

nominal interest rates actually raises inflation,21

∂πS
t

∂is
> 0,

for t > 0. Therefore, the inverse relation between the nominal interest rates and inflation

under the Taylor rule equilibrium is driven entirely by negative wealth effects. In the ab-

sence of such wealth effects, not only does the monetary authority lose control of initial

inflation, but the sign of the effect is the opposite of the standard Taylor rule result, as

indicated in Figure 2 (Panel B).

Lastly, our decomposition also uncovers the forces determining the long-run dynamics

of the model. An often emphasized property of the Taylor rule equilibrium is its long-run

monetary neutrality, that is, the result that if nominal interest rates revert back to steady

state, then consumption and inflation return to steady state as well. The next lemma show

that, actually, all bounded solutions of the New Keynesian system share this property.

Lemma 3 (Long-run monetary neutrality). Suppose limt→∞ it = ρ. Then, all bounded solutions

21See Appendix B for a formal derivation of this result.
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of the system (1)-(2) satisfy

lim
t→∞

πt = lim
t→∞

ct = 0.

An implication of Lemma 3 is that the long-run properties of consumption or inflation

cannot be used to select an equilibrium, as all equilibria share the same long-run behavior.

2.4 The Intertemporal Keynesian Cross

The previous analysis emphasizes the important role that the wealth effect plays in the

equilibrium of the economy. Here, we study the determination of wealth effects. In particu-

lar, we explore whether we can tie the determination of C to observables, without resorting

to policy rules.

There are two main forces that determine the equilibrium average consumption: the

spending-income spiral and the spending-inflation spiral, given, respectively, by

ρ
∫ ∞

0
e−ρtytdt = C, πt = πS

t +
κ

ρ
eωtC.

The spending-income spiral states that average income equals average consumption, and

higher income leads to higher consumption. The spending-inflation spiral states that, given

a path for the nominal interest rate, the inflation rate increases with average consumption.

Plugging in these two relations into (8), we get

C = [1− (τ − σωb)]C + ρ
∫ ∞

0
e−ρt[b(it − πS

t − ρ) + Tt]dt. (13)

Equation (13) states that average consumption is determined according to an Intertemporal

Keynesian Cross, in the spirit of the old-Keynesian logic found in many introductory text-

books.22 In fact, one could interpret 1− (τ − σωb) as analogous to the marginal propen-

sity to consume (MPC), and ρ
∫ ∞

0 e−ρt[b(it − πS
t − ρ) + Tt]dt as the autonomous portion of

spending. To simplify the notation, define

WF ≡
∫ ∞

0
e−ρtb(it − πS

t − ρ)dt, T ≡
∫ ∞

0
e−ρtTtdt,

22Note that our definition of an Intertemporal Keynesian Cross is different from the one in Auclert et al.
(2018) or the New Keynesian Cross in Bilbiie (2019).
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and A ≡ WF + T, where A is the autonomous spending, WF is the Hicksian financial wealth

(since it is calculated using the inflation rate from the substitution effect), and T is the

present value of transfers.

To determine the equilibrium value of C, we need to consider two separate cases: i)

monetary policy has no fiscal consequences, that is, τ = b = 0; ii) monetary policy has

fiscal consequences, that is, either τ > 0 or b > 0 (or both). The equilibrium implications

of the model are very different in these two cases.

Consider first the case τ = b = 0. This is a knife-edge case and not empirically relevant,

but it still important to consider it, as it is commonly assumed in the literature. Evaluating

equation (13) at τ = b = 0, we get

C = C + ρA⇒ A = T = 0,

that is, the only restriction we get from this equation is that the present value of trans-

fers must be zero. But beyond that, the budget constraint of the household imposes no

restriction on what average consumption is. In particular, the level of average consump-

tion, and hence the wealth effect, has a self-fulfilling nature: if agents expect to receive

higher income,
∫ ∞

0 e−ρtytdt, they increase their consumption accordingly, and since out-

put is demand determined, output increases to satisfy that demand. But since the house-

holds’ income equals the present value of output, the increase in consumption becomes

self-fulfilling. This logic resembles the case in which the MPC is equal to one in old-

Keynesian analysis. In the standard equilibrium selection, the Taylor rule pins down C by

imposing that only a specific path of inflation be consistent with a bounded equilibrium.

However, this result presents a challenge to testing the theory since, given observables, a

continuum of paths for consumption and inflation (indexed by C) is consistent with the

system of equations governing the equilibrium.

However, the indeterminacy of the wealth effect disappears when monetary policy

has fiscal consequences, and fiscal data can be used to discipline the model. As we move

away from τ = b = 0, average consumption is determined by the observed paths of policy

variables. Suppose τ > 0 or b > 0. The next proposition shows how to determine the

average consumption.

21



Proposition 3 (Intertemporal Keynesian Cross). Suppose τ > 0 or b > 0 (or both). Average

consumption, C, is given by

C = ρ
A

τ − σωb
= ρ

WF + T
τ − σωb

.

To grasp the intuition behind this result, consider the impact of a shock that increases

the value of autonomous spending by ∆
ρ . If we were to keep inflation and output constant,

this would generate an increase of consumption of ∆. But higher consumption raises de-

mand, increases the households’ income by 1− τ, and generates inflation, reducing the real

return on the household’s assets by σωb (remember ω < 0). As a result, there is a (first-

round) net increase in wealth of 1− (τ − σωb). This additional wealth further increases

consumption, which increases net wealth again, in the following way

∆ + (1− (τ − σωb))∆ + (1− (τ − σωb))2 ∆ + . . . =
∆

τ − σωb

Thus, an intuition analogous to the standard old-Keynesian cross is useful for thinking

about wealth effects in the New Keynesian model.

Note that Proposition 3 states that, given a path for the nominal interest rate and gov-

ernment transfers, average consumption is determined by equation (13). This is an im-

portant result for two reasons. First, it shows that, given the equilibrium path for fiscal

variables, the New Keynesian model has a unique prediction for the paths of consumption

and inflation. This result is in stark contrast to the multiplicity of equilibria obtained when

fiscal variables are treated as a residual.23 Thus, it is important to incorporate the fiscal

side of the model even if one believes that it is of the passive or “Ricardian” type. Second,

it shows that, in this benchmark RANK model, the wealth effect is completely determined

by fiscal variables. The model has no other channel through which a monetary shock can

affect households’ wealth, as it operates either through government bonds or government

transfers.

The idea that the liabilities of the government are the relevant assets for the assesse-

ment of wealth effects is not new. This observation was central to Pigou’s argument in his

response to Keynesian economics. For instance, Patinkin describes Pigou’s argument as

23It is important to note that this result is not an implication of the FTPL. All these results are consistent
with any monetary/fiscal regime that generates the given equilibrium paths for policy variables.
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follows:24

(...) the private sector considered in isolation is, on balance, neither debtor nor

creditor, when in its relationship to the government, it must be a net “credi-

tor.”(...) If we assume that government activity is not affected by the move-

ments of the price level, then the net effect of a price decline must always be

stimulatory.

Two aspects of this quote are important. First, the idea that private assets cancel out

in the aggregate, but households are on net creditors of the government. Second, the fact

that it is assumed that “government activity is not affected” by the shock. The Pigou effect,

as described here, is remarkably similar to the modern formulation of the FTPL. In both

cases, the assumption that fiscal variables do not react is important, as is the assumption

of flexible prices, as the effect comes from movements in the price level. In contrast to

both the original Pigou effect and the FTPL, our focus here is on the dynamics under sticky

prices. The wealth effect will not come, then, from adjustments in the price level, but from

movements in the real interest rate, as we discuss next.

Wealth effects in the FTPL. In the spirit of the original formulation of the FTPL, and

consistent with Pigou’s analysis described above, we assume that there is no reaction of the

fiscal authority to changes in the nominal interest rate, i.e., Tt = 0 for all t ≥ 0. In contrast

to both, we assume prices are sticky. An important implication of these assumptions is

that an increase in interest rates generates a positive wealth effect, at least in the case of

short-term bonds we have considered so far.

Lemma 4 (FTPL-Pigou effect). Suppose τ > 0 or b > 0 (or both), and T = 0. Suppose govern-

ment debt pays coupons e−mt at period t. Then, there exists a threshold m∗ > 0 such that

∂C
∂it

< 0 (14)

if and only if the maturity of government debt is sufficiently long, i.e. m < m∗.

24See Patinkin (1948).
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Lemma 4 considers the wealth effect under the FTPL. To highlight the importance of

the maturity of the government debt, we extend the basic model to allow for exponentially

decaying coupons for government bonds, as in Woodford (2001). The rate of decay m is

inversely related to the maturity of bonds. A perpetuity corresponds to m = 0, while

m → ∞ corresponds to the short-term bonds we have assumed until now. Introducing

long-term bonds brings a new effect, as an increase in the nominal interest rates reduces

the value of bonds when they have positive duration, with important implications for the

determination of wealth effects.

Consider first the case in which the maturity of government bonds is relatively short.

The wealth effect in response to an increase in the interest rate is positive in this case. As

an increase in nominal rates leads to an increase in real rates when prices are sticky, house-

holds reinvest their savings at higher real rates after the shock. This positive wealth effect

explains the consumption boom after two quarters in response to an increase in nominal

interest rates observed in Panel A of Figure 2, as the positive wealth effect eventually over-

turns the substitution effect.25 The Neo-Fisherian response is even more pronounced than

in the GE-SE equilibrium, generating a sharp increase in inflation, as seen in Panel B of

Figure 2.

The previous result relies on the assumption of the short maturity of government bonds.

An increase in nominal interest rates reduces the value of government bonds when they are

long term, generating a reduction in wealth for households. If this effect is strong enough,

which depends on the duration of the public debt, then an increase in interest rates gener-

ates a negative wealth effect. Consumption and inflation drop on impact in response to the

increase in nominal interest rates in our calibrated example. The negative wealth effects

generated by government bonds overturn the Neo-Fisherian predictions, but the effects

are weaker than those generated under a Taylor rule.

In a recent paper, Cochrane (2018) considers the implications of an FTPL model with

sticky prices and long-term bonds. He also finds that inflation falls in response to an in-

crease in nominal interest rates. He argues that the logic behind the result is, however,

substantially different from the standard New Keynesian logic. By focusing on the role of

25In the case of τ = 0, such that the primary surplus is exogenous as is usually assumed in the context of
the FTPL, consumption increases at all dates in response to higher interest rates.
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wealth effects, we show that the two cases are more similar than they seem to be at first. The

FTPL with long-term bonds relies on financial wealth, WF, to generate a negative wealth

effect. The negative wealth effect in the Taylor rule relies, generically, on movements in T.

In the empirically relevant case of τ > 0 or b > 0, a fiscal response is required to achieve

the negative wealth effects in the Taylor rule equilibrium. Fiscal variables play an impor-

tant role in achieving a negative wealth effect in both cases, but one theory emphasizes the

role of government bonds, while the other depends on movements in fiscal transfers.

2.5 An alternative consumption decomposition

An alternative decomposition to ours divides the response of equilibrium consumption

into a direct effect of the real interest rate, keeping output and fiscal policy fixed, and a

indirect effect that incorporates the changes in output and fiscal policy:

ct = cH
t + ρ

∫ ∞

0
e−ρtb(it − ρ− πt)dt︸ ︷︷ ︸
direct effect

+ ρ
∫ ∞

0
e−ρt [(1− τ)yt + Tt] dt︸ ︷︷ ︸

indirect effect

.

This decomposition appears in, for example, Kaplan et al. (2018). There are two main

differences between this decomposition and the one proposed in Proposition 1. First, the

direct effect captures the response of the Marshallian demand to the equilibrium real interest.

Compared with (9), the direct effect combines the Hicksian demand with the wealth effect

coming from interest payments. Second, we further decompose the Hicksian demand into

a GE-SE and a GE amplification. This allows us to separate the interactions between the

wealth effect and substitution effect in general equilibrium. Therefore, the two decompo-

sitions will coincide only if b = 0, so there is no distinction between the Marshallian and

the Hicksian demand, and prices are rigid, so the GE multiplier is equal to zero.

These differences reflect the different goals that the decompositions were designed to

achieve. The direct effect isolates the impact of changes in real interest rates, both from

an intertemporal substitution channel and from revaluation effects from asset holdings.

Proposition 1 focuses on the change in the nominal interest rate and the impact it has on

the general equilibrium of the economy. A key innovation of our decomposition is that our

substitution effect incorporates only the change in prices that is consistent with the substi-
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tution effect. It is this feature that allows us to identify the importance of the wealth effect

in the equilibrium dynamics of the economy.

3 The Quantitative Importance of Wealth Effects in RANK

In this section, we study the quantitative importance of wealth effects in a medium-scale

DSGE New Keynesian model. We first extend our consumption decomposition to the

DSGE model and show that wealth effects play an important role in explaining consump-

tion dynamics. We then provide empirical estimates of the two main drivers of wealth

effects in a RANK model: i) revaluation of government bonds, and ii) fiscal transfers. We

find that our empirical estimates differ significantly from the corresponding fiscal behav-

ior in the DSGE model, suggesting that the fiscal-based mechanism implicit in the RANK

model is not strong enough to generate the empirically required wealth effects.

3.1 The Model

The model is a cashless limit variant of Christiano et al. (2005) augmented to explicitly ac-

count for fiscal variables. Time is discrete and denoted by t = 0, 1, 2, . . . , ∞. The economy is

populated by a continuum of mass one of infinitely-lived households. Households derive

utility from the consumption of a final good and leisure. Their preference for consump-

tion exhibits an external habit variable. Labor supply is differentiated across households.

Wages for each type of labor are negotiated by a union, which chooses the wage but is

subject to nominal rigidities à la Calvo. Households are the owners of the capital of the

economy. They rent capital services to the firms, which are a function of the capital stock

they hold and the utilization level they choose. A higher utilization level comes at the cost

of higher depreciation. Households also decide how much capital to accumulate given the

adjustment costs they face.

There are two types of firms in the economy. There is a continuum of intermediate

goods producers, which transform labor and capital services into differentiated goods and

set prices subject to the Calvo friction. Those wages and prices that cannot be re-optimized

in a given period are indexed to past inflation. Intermediate goods producers are subject
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to a sales tax. The second type of firm is a representative firm that produces the final con-

sumption good using the intermediate goods as inputs and sells the output in competitive

markets. Finally, there is a government that chooses a path for the nominal interest rate,

sales taxes, lump-sum transfers, and debt. Importantly, unless otherwise noted, we assume

that monetary policy follows a standard Taylor rule. The reader can refer to the appendix

for a detailed derivation of the model.

To determine the necessary fiscal response to a monetary shock, we explicitly introduce

the government’s budget constraint. A log-linear approximation of the budget constraint

around a steady state with constant inflation and positive government debt is given by

bybt =
1 + i

(1 + π)(1 + g)
by(it−1 − πt − ρ + bt−1)− (τyt + τt − Tt) (15)

where yt is output, it is the nominal interest rate (set by the monetary authority in period

t), πt is the inflation rate, bt is the real value of government bonds outstanding in period

t, τt is a sales tax, and Tt is a lump-sum transfer. Variables without a subscript denote

the corresponding variables in steady state, g denotes the growth of the economy in a

balanced growth path, and ρ denotes the households’ subjective discount rate. Finally, by

denotes the debt-to-GDP ratio in steady state. Note that, given that monetary policy is

specified using a Taylor rule, the only role of the government’s budget constraint (15) is

to determine the present value of fiscal transfers {T}∞
t=0. Although it is not necessary to

compute the solution of the model, this model-implied fiscal response is relevant because

it can be directly compared to the corresponding fiscal response in the data, providing a

way to empirically assess the ability of the model to generate wealth effects.

3.2 Empirical Evidence on the Fiscal Response to Monetary Shocks

Following Christiano et al. (2005) and Altig et al. (2011), we estimate the parameters of the

model using impulse-response matching, that is, the parameters are chosen to minimize the

distance between the model impulse responses to monetary policy shocks and the corre-

sponding impulse responses observed in the data. We estimate the empirical IRFs using

a VAR identified by a recursiveness assumption, as in Christiano et al. (1999), extended to
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include fiscal variables.

VAR estimation. The variables included in the VAR are: real GDP per capita, CPI in-

flation, real consumption per capita, real investment per capita, capacity utilization, hours

worked per capita, real wages, tax revenues over GDP, government expenditures per capita,

federal funds rate, and the real value of government debt per capita. Following Christiano

et al. (2005), we estimate a four-lag VAR using quarterly data for the period 1965:3-1995:3.

The identification assumption of the monetary shock is as follows: the only variables that

are allowed to react contemporaneously to the monetary policy shock are the federal funds

rate and the value of government debt. All other variables, including government tax rev-

enues and expenditures, are allowed to react with a lag of one quarter. This assumption is

the natural extension of Christiano et al. (1999): while agents’ decisions (with agents, in our

case, including households and the government) cannot react to the shock contemporane-

ously, financial variables (in our case, the federal funds rate and the value of government

debt) immediately incorporate the information of the shock.

All the variables are obtained from standard sources (see the appendix for the details),

except for the real value of debt, which we construct from the series provided by Hall et

al. (2018).26 These data provides the market value of government debt held by private

investors at a monthly frequency from 1776 to 2018. We transform the series into quarterly

frequency by keeping the market value of debt in the first month of the quarter. This choice

is meant to avoid capturing changes in the market value of debt arising from changes in

the quantity of debt after a monetary shock instead of changes in prices.

Figure 3 shows the results. As is standard in the literature, we find that a contractionary

monetary shock increases the federal funds rate and reduces output and inflation on im-

pact.27 Moreover, the contractionary monetary shock reduces consumption, investment,

and hours worked.28 The bottom three graphs show the dynamics of fiscal variables. We

find that a monetary shock has a statistically significant negative effect on revenues and

26For recent work using a similar data construction, see e.g., Cochrane (2019) and Jiang et al. (2019).
27As is common in the literature, our point estimates reveal a price puzzle on impact. However, this result

is not statistically different from zero at a 95% confidence level.
28The IRFs imply a statistically significant expansion after 10 quarters, but this result varies across specifi-

cations. In a VAR without the fiscal variables, for instance, we do not find a statistically significant expansion
after 10 quarters.
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FIGURE 3: Impulse responses to a monetary shock. Gray area represents 95% confidence
intervals.

a positive effect on expenditures. This effect is likely driven by the automatic stabilizer

mechanisms embedded in the government accounts. Since the monetary shock is con-

tractionary, households’ income and employment decrease. This has three effects. First,

government revenues decrease. Second, because income taxes are progressive, the aver-

age income tax in the economy decreases. Third, because a large fraction of government

transfers are unemployment benefits and other safety net transfers, expenditures increase

during recessions. All these channels generate a reduction in the government’s primary

surplus. The graph showing government debt shows how the reduction in the primary

surplus is financed. A contractionary monetary shock generates a large reduction in the

market value of government debt: on impact, initial debt declines by 44 basis points (bps).

Immediately after, the government accumulates debt for about 12 quarters.

Model impulse responses. We use the empirical IRFs to estimate the parameters of our

medium-scale DSGE model using “impulse-response matching” techniques.29 Our estima-

29See Christiano et al. (2005) for a detailed description and Christiano et al. (2010) for a Bayesian version of
the estimator.
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tion generates parameter values consistent with those found in the literature. We relegate

to the appendix a detailed description. Figure 3 shows the model-based impulse responses

to a monetary shock. The results are roughly in line with those obtained by Altig et al.

(2011). The model does a good job of matching the dynamics of the federal funds rate, out-

put, and inflation, but it faces more difficulty in capturing the dynamics of consumption,

investment, and hours, especially after 10 quarters.

3.3 Consumption decomposition in the DSGE model

Our first exercise is to decompose the equilibrium dynamics of consumption into a sub-

stitution effect, a wealth effect, and an interaction term. As in Section 2, we obtain this

decomposition by dropping the Taylor rule and considering how consumption is directly

related to the nominal interest rate for a given level of average consumption. The result of

this decomposition is provided in the next proposition.

Proposition 4 (Consumption Decomposition in General Equilibrium (DSGE)). Suppose a

generalized Blanchard-Kahn condition, defined in the appendix, is satisfied.30 Then,

ct = cS
t︸︷︷︸

GE-SE

+ C︸︷︷︸
wealth effect

+

GE multiplier︷ ︸︸ ︷(
p+1

∑
k=1

νkλt
k − 1

)
×C︸ ︷︷ ︸

GE amplification

,

where cS
t is a function of {it}∞

t=0 and it is independent of C, p is the number of predetermined

variables in the system, and λk < 1, for k = 1, . . . , p + 1.

Proposition 4 extends the result in Proposition 1 to the context of the richer DSGE

model. It decomposes the equilibrium consumption into the same three components: the

GE-SE, the wealth effect, and the GE amplification. The GE-SE has properties analogous to

those derived in the context of the simple New Keynesian model of Section 2. First, the

present value of GE-SE is equal to zero when evaluated using steady-state prices. Sec-

ond, as shown in the appendix, it corresponds to the solution to a fixed-point problem, as

30Intuitively, this condition says that the system lacks exactly one boundary condition without the Taylor
rule. Therefore, the indeterminacy can be indexed by the wealth effect C.
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FIGURE 4: GE Multiplier and consumption decomposition in the DSGE model

it equals the Hicksian demand evaluated at the inflation rate that is itself consistent with

the Hicksian demand. Moreover, the GE-SE and the GE multiplier are independent of the

wealth effect C, so the GE-SE is uniquely determined by the sequence of nominal interest

rates. The GE multiplier in the DSGE model has richer dynamics than the multiplier ob-

tained in the simple model. In particular, it can have hump-shaped dynamics, an important

feature for matching the sluggish response of consumption observed in the data.

A simple way of computing the decomposition is the following. Given a path of nomi-

nal interest rates, the GE-SE can be computed by replacing the Taylor rule by the condition

that average consumption is equal to zero.31 Given ct and cS
t , the GE Multiplier can be

obtained as follows:

GE Multipliert =
ct − cS

t
C

− 1.

The GE amplification term is then GE Multipliert × C.

Figure 4 depicts the results. The GE-SE and the wealth effect have a marginal role in

the equilibrium dynamics of the economy. While equilibrium consumption has a peak

response of 12 bps, the GE-SE generates a peak response slightly above 1 bp, while the

wealth effect is constant at less than 1 bp.32 That is, the GE-SE and WE jointly account

for less than 17% of the total response of consumption at their peak. It is the interaction

term that is driving most of the dynamics. While the wealth effect is small, the general

31In Dynare, for instance, this could be easily implemented by introducing, in place of the Taylor rule, the
equation cS

t + bt =
1
β bt−1, given b−1 = 0, which represents the condition C = 0 in recursive form.

32The peak response of the GE-SE and overall consumption do not occur in the same period.
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equilibrium mechanisms in the model greatly amplify this effect, with a maximum value

of the multiplier of 16. That is, at the peak response of consumption, the interaction term

contributes around 11 of the 12 bps. These results reinforce our previous analysis: the

economy reacts little to the change in the path of the nominal interest rate but substantially

to the resulting change in the households’ wealth.

An implication of the results in Figure 4 is that the quantitative performance of the

model relies on generating sufficient wealth effects. In particular, the response of con-

sumption is substantially dampened in the absence of wealth effects, as can be seen from

the GE-SE. As discussed in Section 2.4, wealth effects in RANK need to be supported by an

appropriate fiscal response. We can then assess the ability of the model to generate wealth

effects by comparing the fiscal response required by the model and the corresponding fiscal

response estimated in the data.

3.4 Assessing the Quantitative Importance of Wealth Effects

We next present the main exercise of this section. We assess whether the fiscal response to

a monetary shock estimated in the data is enough to support the wealth effects required by

the model. We do this in two steps. First, we test whether the empirical fiscal response and

the one implied by the model are statistically different from each other. Second, we con-

sider the quantitative impact on the model impulse responses of having to exactly match

the fiscal response observed in the data.

Empirical and model-based fiscal responses. The fiscal response in the model corre-

sponds to the present discounted value of fiscal transfers over an infinite horizon, that is,

∑∞
t=0

(
1

1+ρ

)t
Tt. We next consider the empirical counterpart of this quantity. First, rewrite

the per-period budget constraint (15) as an intertemporal budget constraint from period

zero to T :

byb0︸︷︷︸
debt

revaluation

=
T
∑
t=0

(
1

1 + ρ

)t

 τyt + τt︸ ︷︷ ︸
tax revenue

− by

1 + ρ
(it−1 − πt − ρ)︸ ︷︷ ︸

interest payments

 − T0,T +

(
1

1 + ρ

)T
bybT︸ ︷︷ ︸

other transfers/expenditures
& final debt

(16)
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where 1
1+ρ = 1+i

(1+π)(1+g) . The right-hand side of (16) is the present value of the impact of

a monetary shock on the fiscal accounts. The first term represents the change in revenues

due to the real effects of monetary shocks. If a contractionary monetary shock generates

a recession, government revenues will naturally decrease as a consequence, both because

output decreases and because the average tax decreases if the tax system is progressive.

The second term represents the change in interest payments on government debt due to the

change in nominal rates. For example, a contractionary monetary shock increases the nom-

inal payments on government debt. The last two terms are adjustments in transfers and

other government expenditures, and the final debt position at period T , respectively. In

particular, T0,T represents the present discounted value of transfers from period 0 through

T . Provided that T is large enough, such that (yt, τt, it) have essentially converged to the

steady state, then the value of debt at the terminal date, bT , equals (minus) the present dis-

counted value of transfers and other expenditures from period T onward. Hence, the last

two terms combined can be interpreted as the present discounted value of fiscal transfers

from zero to infinity.

The left-hand side represents the revaluation effect of the initial stock of government

debt. In the presence of long-term bonds, a contractionary monetary shock reduces the

initial value of government bonds. Hence, part of the adjustment in response to the shock

comes from a reduction in the value of debt, instead of coming entirely from raising present

or future taxes. We define the fiscal needs of the government as the sum of the present value

of interest payments minus the tax revenue, which equals (minus) the sum of the present

value of transfers and the initial value of debt.

In a model with a Taylor rule, the government’s fiscal needs are independent of the

maturity of government debt, as output and inflation are independent of the government’s

budget constraint. Hence, without loss of generality, we compute the government’s fiscal

needs in the model by assuming that bonds are short-term. Different assumptions about

government maturity affect the breakdown between transfers and initial debt, but not the

total fiscal needs of the government.

Table 1 shows the impact on the fiscal accounts of a monetary policy shock, both in

the data and in the estimated model. We start by testing whether our estimate of the fiscal
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(1) (2) (4) - (3) - (5) (3) (4) (5) (1) - (2) - (3) + (4) - (5)
Revenues Interest Payments Fiscal Needs Transfers & Debt in T Initial Debt Residual

Expenditures

Data 35.97 25.19 15.71 41.70 13.63 -43.77 -26.48
[-55.49,67.56] [-22.40,72.78] [-28.12,59.53] [-13.38,96.78] [-36.11,63.37] [-63.22,-24.33] [-128.52,75.55]

Model -2.40 70.09 72.90 - - - -

TABLE 1: The impact on fiscal variables of a monetary policy shock
Note: Confidence interval at 95% confidence level.

response to a monetary shock is consistent with the government’s intertemporal budget

constraint. To test this, we apply equation (16) to the data and check whether the difference

between the left-hand side and the right-hand side is different from zero. We decompose

the fiscal response in the data into six groups: present value (PV) of revenues, PV of interest

payments, PV of transfers and expenditures, final value of debt, initial value of debt, and a

residual. The residual is calculated as

Residual = Revenues - Interest Payments - Transfers + Debt in T - Initial Debt

We truncate the calculations to quarter 60, that is, T = 60 in equation (16). The results in

Table 1 imply that we cannot reject the possibility that the residual is zero and, therefore,

we cannot reject the possibility that the intertemporal budget constraint of the government

is satisfied in our estimation.

The adjustment of the fiscal accounts in the data corresponds to the patterns we ob-

served in Figure 3. The contractionary monetary policy shock leads to an increase in the

present value of interest payments and of transfers and expenditures. The present value

of revenues goes up in response to the shock, due to the boom generated by the mone-

tary shock after period 10. The response of initial debt is quantitatively important, and it

accounts for the bulk of the adjustment in the fiscal accounts.

The second line of Table 1 shows the corresponding fiscal variables that come out of

our quantitative model. Since the model forces the intertemporal budget constraint to be

satisfied by construction, and we collapse debt and transfers into a unique variable, only

the first three columns are relevant. The values of revenues and interest payments are both

within the 95% confidence interval of the data. The main implication of Table 1 is that the
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FIGURE 5: Model impulse response functions to a monetary shock. Interest rates and fiscal
variables match the data. Gray area represents 95% confidence intervals.

fiscal needs observed in the data are substantially smaller, and statistically different, from

the one required by the model. While the government’s fiscal needs are roughly 73 bps in

the model, in the data this number is below 16 bps. Therefore, the empirical fiscal response

is substantially weaker than the response required by the model.

Even though the result in Table 1 implies that the model-based government’s fiscal

needs are statistically different from those in the data, this evidence is not enough to con-

clude that this difference is economically significant. On the one hand, given that the

marginal propensity to consume is relatively low in the standard calibration, it is possible

that this difference generates only small differences in consumption. On the other hand,

movements in fiscal variables, and ultimately wealth effects, are substantially amplified

in general equilibrium. To evaluate the economic significance of the discrepancy in fiscal

needs we documented in Table 1, we next consider the impact of these differences in the

model impulse responses.

Fiscal needs and model impulse responses. In Figure 3, we considered the model im-

pulse responses when the average consumption is determined by a Taylor rule. As we have

seen, this level of consumption requires a counterfactual fiscal response to be supported in
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equilibrium. We next consider the model impulse responses when the government’s fiscal

needs are consistent with the response we estimated in the data. Figure 5 depicts the re-

sults. The solid line is the impulse response estimated from the data, with the gray area

being the 95% confidence intervals. The pointed line is the impulse response of the model.

We can see that the model predicts higher inflation than does the data, though mostly

inside the confidence bands. However, the data clearly rejects the impulse response for

output. While the data implies that a positive monetary shock generates a recession in the

short run, the model predicts a boom. The explanation for the initial boom is reminiscent

of our analysis of the FTPL in Section 2.4. In the absence of a fiscal response, an increase

in nominal interest rates raises consumption and inflation due to a positive wealth effect,

as the increase in real rates raises the households’ interest income. To avoid this outcome,

the model requires a strong enough reduction in fiscal transfers or a sufficient decline in

the initial value of government debt. Our empirical results indicate that the movements in

fiscal transfers or initial debt are not strong enough in the data to overcome the positive

wealth effect, at least in the context of a RANK model.33

Thus, we derive two main conclusions from this analysis. First, wealth effects play

an important role in the ability of the DSGE model to match the observed response to

monetary policy shocks, as shown in Figure 4. Second, the model relies on a counterfactual

fiscal response to support these wealth effects, as shown in Figure 5. The response of fiscal

variables to monetary shocks observed in the data is too weak compared with what is

required by the model.

Our results in this section focus on the role of fiscal-based wealth effects, as these are

generically the only kind of wealth effects in RANK models. As we pointed out in Section

2.4, such fiscal-based wealth effects have a long tradition in monetary economics, going

back to the work of Pigou. In the same way, skepticism about the empirical importance of

this channel is not new. James Tobin argued that wealth effects generated by private assets

(or inside assets), as emphasized in the work of Irving Fisher, could be much stronger than

those generated by the net assets available to households, that is, government bonds:34

33The results in Figure 5 are based on a model estimated without taking into account the fiscal impulse
responses. In Appendix D, we re-estimate the model using the fiscal data and obtain similar results.

34See Tobin (1982).
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The gross amount of these “inside” assets was and is orders of magnitude larger

than the net amount of the base. Aggregation would not matter if we could

be sure that the marginal propensities to spend from wealth were the same

for creditors and debtors. But if the spending propensity were systematically

greater for debtors, even by a small amount, the Pigou effect would be swamped

by this Fisher effect.

In the next section, we show that introducing private debt in a model with heteroge-

neous agents generates stronger wealth effects and significantly improves the quantitative

performance of the model, as suggested by Tobin in the quote above.

4 Private Wealth Effects: A Heterogeneous-Agents Model

In this section, we consider the importance of private wealth effects in a heterogeneous-

agents economy. We first extend our consumption decomposition to an analytical Two-

Agent New Keynesian (TANK) model with positive private liquidity. We then introduce

heterogeneous agents and private assets into our medium-scale DSGE model and show

that it substantially improves the quantitative performance of the model.

4.1 Consumption decomposition in a TANK model

Model. The economy is populated by two types of households, borrowers and savers. As

in the work of Eggertsson and Krugman (2012), borrowers are more impatient than savers

and are subject to a borrowing constraint. The aggregate demand block for this model, in

log-linear form, consists of an Euler equation for savers

ċs,t = σ−1(it − πt − ρ),

a budget constraint for borrowers

cb,t = (1− α)(wt − pt + nb,t) + Tb,t − (it − πt − ρ)d,
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a market clearing condition for goods

ωcb,t + (1−ω)cs,t = ct,

and expressions for the real wage, labor supply, and fiscal transfers, provided in the ap-

pendix.35 We define ct as the aggregate consumption and (cj,t, nj,t, Tj,t) as, respectively, the

consumption, labor supply, and government transfers to household j ∈ {b, s}; ρ denotes

the discount rate of savers, ω the share of borrowers, 1− α the labor share, and d the private

debt-to-GDP ratio in steady state.

The Euler equation of savers holds with equality at all periods, as savers are not con-

strained in equilibrium. In contrast, the borrowing constraint is binding for borrowers, so

they simply consume their income, which consists of labor income and fiscal transfers, net

of the interest payments on the debt. In particular, borrowers are unable to smooth out

movements in borrowing costs, so changes in interest rates have a direct impact on their

consumption.

Solving for the labor income of borrowers in equilibrium, and assuming that the trans-

fers they receive are a function of aggregate income, we obtain the following expression for

borrowers’ consumption:

cb,t = χcct − χr(it − πt − ρ)d, (17)

where χc > 0 and χr > 0 are coefficients defined in the appendix.

The parameter χc captures the cyclicality of borrowers’ consumption, and it plays a

central role in the aggregate consumption dynamics in TANK models.36 The second term,

in contrast, is typically absent from analytical HANK models, which often assume zero

private liquidity. As we show in the next proposition, the presence of private assets has

important implications for the aggregate dynamics of the economy.

Proposition 5 (Dynamics in the TANK model). Suppose ωχc < 1. Then, aggregate consump-

tion ct and inflation πt satisfy the following conditions:

35Appendix C contains the complete derivation of the model.
36See e.g. the discussion in Bilbiie (2018).
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1. Generalized Euler equation

ċt = σ̃−1(it − πt − ρ)− δct + vt, (18)

where σ̃−1 is the macro-EIS, vt ≡ − χrd
1−ωχc

(
i̇t − ρ(it − ρ)

)
captures the effect of private debt,

and δ ≥ 0 is the compounding parameter.

2. New Keynesian Phillips curve

π̇t = ρπt − κct. (19)

3. Intertemporal budget constraint

∫ ∞

0
e−ρtctdt =

∫ ∞

0
e−ρt [(1− τ)yt + b(it − πt − ρ) + Tt] , (20)

where b is public debt, Tt = ωTb,t + (1−ω)Ts,t denotes total transfers, and yt = ct.

Proposition 5 shows that aggregate consumption satisfies a generalized Euler equation,

which differs from the standard Euler equation in three main respects. First, the macro-

EIS σ̃−1 can differ from the micro-EIS σ−1. In the case d = 0, the macro-EIS is larger than

the micro-EIS if and only if χc > 1, echoing the result in Bilbiie (2019). Second, the Euler

equation features compounding when δ > 0, which means that current consumption reacts

more strongly to future interest rate changes than with the standard Euler equation.37 In

models without private liquidity, compounding is the result of uninsurable income risk

combined with countercyclical inequality, that is, χc > 1. In contrast, the model with

private liquidity generates compounding even with χc ≤ 1. Third, the presence of private

debt adds a new term to the Euler equation, capturing the direct impact of interest rates

on the consumption of borrowers. Note that if d = 0, then δ = 0 and vt = 0 for all t ≥ 0.

If we also assume that χc = 1, then the Euler equation would be identical to the one in

37Integrating the Euler equation forward, and supposing cT = 0 at some date T > t, we have that ct =

−
∫ T

t eδ(z−t) [σ̃−1(iz − πz − ρ) + vz
]

dz. Hence, current consumption responds more to future consumption
when δ > 0.
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(1). Therefore, this heterogeneous-agent model differs significantly from the RANK model

only in the case of positive private liquidity.

The supply side of the economy, captured by the New Keynesian Phillips curve, is the

same as in the RANK model of Section 2. Moreover, the intertemporal budget constraint is

also the same as in the representative-agent economy. Because private assets cancel out in

the aggregate, the determination of average consumption depends only on the amount of

public assets b and fiscal transfers, as in the analysis of Section 2.4. Despite this fact, private

assets play an important role in the determination of wealth effects in this economy.

Consumption decomposition and private wealth effects. We turn next to the main result

of this section, a consumption decomposition in our heterogeneous-agents economy with

positive private liquidity. We start by applying the partial-equilibrium Slutsky decompo-

sition to the consumption of savers, which, combined with the market clearing condition

for goods, gives us

ct = (1−ω)cH
s,t + (1−ω)Cs + ωcb,t,

where cH
s,t and Cs denote the Hicksian demand and the average consumption of savers,

respectively.

The first term (1− ω)cH
s,t denotes the substitution effect. Because borrowers are con-

strained, they do not respond to compensated changes in interest rates, so the substitution

effect is equal to zero for them. Hence, the wealth effect is a combination of the average

consumption of savers and the consumption of borrowers. In contrast to the case of RANK,

the wealth effect is then time varying with heterogeneous agents. On average, the wealth

effect is still equal to average consumption, C, but it typically differs from C at each point

in time. As before, the substitution and wealth effects are intertwined in general equi-

librium, as variations in C affect inflation and ultimately the substitution effect. The next

proposition provides a decomposition of consumption in our TANK model that takes these

interactions into account.

Proposition 6 (Consumption decomposition in TANK). Suppose σ̃ > 0 and χc = 1.38 Let

38As the consequences of having χc 6= 1 have been already explored in the TANK literature, we focus on
the case χc = 1. For completeness, we consider the general case in appendix C.
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(c∗t , π∗t ) denote the solution to (18)-(19) satisfying C = 0 and cS,∗
t denote the savers’ Hicksian

demand evaluated at π∗t . Then, aggregate consumption is given by

ct = (1−ω)cS,∗
t︸ ︷︷ ︸

GE-SE

+ωcS,∗
t −

ωχr

1−ω
(it − π∗t − r̂∗) d︸ ︷︷ ︸

private wealth effect

+ C︸︷︷︸
avg. wealth effect

+

(
ωT + δ

ρ
eωTt − 1

)
C︸ ︷︷ ︸

GE amplification

,

(21)

where ωT > 0 and ωT < 0 denote the eigenvalues of (18)-(19), and r̂∗ ≡ ρ
∫ ∞

0 e−ρs(is − π∗s )ds.39

Proposition 6 decomposes consumption into four components: GE-SE, average wealth

effect, GE amplification, all of which are also present in the representative-agent economy

of Section 2, and the private wealth effect, which is present only in an economy with het-

erogeneous agents. To gain intuition on formula (21), consider first the case d = C = 0.

Compared to a RANK model, the substitution effect gets weaker, as only a fraction 1−ω of

agents engage in intertemporal substitution. As savers shift their consumption over time,

the income of borrowers is affected, as output moves with shifts in demand. Borrowers

react by changing their consumption, which further affects aggregate income and again

borrowers’ consumption, in a manner analogous to Samuelson’s Keynesian multiplier. In

the case χc = 1, the private wealth effect is such that the aggregate consumption coincides

with the consumption in RANK. As in the “as-if” result of Werning (2015), this illustrates

that having heterogeneous marginal propensities to consume does not necessarily alter the

aggregate response of the economy to changes in interest rates.

Consider now the case d > 0 and C = 0. Aggregate consumption differs from the

representative-agent benchmark despite our assumption of χc = 1. An increase in inter-

est rates generates a negative wealth effect for borrowers and a positive wealth effect for

savers. In present value terms, the negative impact on borrowers exactly cancels out the

positive impact on savers. However, private wealth effects have an important effect on the

timing of aggregate consumption. Because savers act according to the permanent income

hypothesis, they smooth out the impact of the change in wealth by adjusting consump-

tion in all periods by the same amount. In contrast, borrowers’ consumption moves with

39The definition of the GE-SE incorporates changes in inflation induced by changes in the borrowers’ con-
sumption. At the expense of some more notation, an alternative definition where the GE-SE incorporates
changes in inflation induced only by the savers’ Hicksian demand generates similar results.
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FIGURE 6: Consumption decomposition in a heterogeneous-agent economy
Calibration: σ = 1, κ = 0.09, ρ = 0.01, χc = 1, ω = 1/6, α = 0.33, and τ = 0.25. Private debt is set to 40% of
GDP and public debt is set to 75% of GDP. Half-life of nominal interest rate is four months. Present value of
fiscal transfers is equal to zero.

the cost of servicing the debt. The net effect on consumption depends on how the private

wealth effect on borrowers deviates from the wealth effect on savers; that is, it depends on

how interest rates deviate from its time-series average. Therefore, the importance of pri-

vate wealth effects is not determined by the level of interest rates, but instead by the extent

to which interest rates are back-loaded or front-loaded.

Private assets also affect the transmission mechanism of monetary policy through its

impact on the GE amplification. The presence of compounding in the Euler equation raises

the GE multiplier on impact, amplifying the effect of variations in C. Hence, either by

creating private wealth effects or by raising the GE amplification, private assets have the

potential to raise the impact of nominal interest rate changes on consumption. Figure 6

shows the decomposition (21) for a calibrated example in the cases of zero private debt

(Panel A) and positive private debt (Panel B). Consistent with the evidence in Section 3,

where a large part of the adjustment came from the revaluation of government bonds, we

focus on the case with long-term bonds and zero fiscal transfers. The comparison between

the two panels shows that private liquidity substantially amplifies the response to mone-

tary policy shocks. The initial impact on consumption is 50% larger when we introduce

private debt. The amplification of the consumption response is explained almost entirely

by a larger private wealth effect. Without private debt, roughly 60% of the change in con-
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sumption is explained by the GE-SE, and the remaining 40% is explained by a combination

of wealth effects and GE amplification. As we introduce private debt, the importance of

the GE-SE declines to about 30%, and the private wealth effect explains about 53% of the

total consumption response.

An important implication of Proposition 6 is that the private wealth effect is indepen-

dent of C. From the analysis of Section 2.4, we know that, generically, any value of C must

be supported in equilibrium by an appropriate fiscal response or by a revaluation of public

debt. We have shown in Section 3 that the quantitative performance of our DSGE model

was based on values of the fiscal response much stronger than those observed in the data.

In the absence of such movements in fiscal variables, the model was unable to match the

dynamics of consumption. The results in Figure 6 indicate that private wealth effects have

the potential to create strong responses to monetary policy without relying on large val-

ues of C or counterfactual fiscal policy. We next consider the extent to which introducing

private wealth effects in our DSGE model can improve its quantitative performance.

4.2 Quantitative importance of private wealth effects

The economy is an extension of the RANK model of Section 2 to incorporate heterogeneous

agents. The supply side of the two economies is isomorphic. The difference is on the

demand side. We now assume that there are two types of households: a fraction 1− ω of

savers (denoted by s) and a fraction ω of borrowers (denoted by b). The two types differ in

their discount factor, which satisfies βb < βs ≡ β. We study the limiting case βb → β.

Because borrowers are more impatient than savers, the steady state of the economy fea-

tures indebted households. We follow Benigno et al. (2019) and assume that the households

face an idiosyncratic interest rate, which depends on their debt level and on the aggregate

level of indebtedness in the economy. In particular, we assume that while savers’ interest

rate is 1 + is
t = 1 + it for all t, the rate faced by borrowers satisfies

1 + ib,j
t = (1 + it)φ

(
dj

t

d
,

dt

d

)
, (22)

where ib,j
t is the interest rate faced by borrower j, dj

t is borrower’s j level of debt, dt =
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∫ 1−χ
0 dj

tdj
1−χ is aggregate borrowers’ debt, d is a debt threshold (and the steady-state level of

borrowers’ debt), and φ(·, ·) is an increasing function with φ(x, x) = 1 for all x ≤ 1,

φ1(1, 1) = 0 and φ2(1, 1) > 0. We assume that the interest rate differential represents a

profit taken by unmodeled financial intermediaries.40 Note that because of their impa-

tience, borrowers never invest in capital, so, in steady state, their capital holdings are zero.

Moreover, we assume that all profits of the firms and financial intermediaries accrue to the

savers. The model of Section 4.1 is a special case in which φ2(1, 1) → ∞. The flexibility of

equation (22) allows the model to better match the hump-shaped response of consumption

to a monetary shock.

We estimate the model using impulse response matching techniques that incorporate

fiscal data in the estimation. We drop the Taylor rule and feed the model with the observed

path for the nominal interest rate. The TANK model has two important parameters that

need to be calibrated: the fraction of borrowers in the economy and the household debt-to-

GDP ratio. We set the fraction of borrowers to 1/6 and the households’ debt-to-GDP ratio

to 40%. As a reference, Kaplan et al. (2014) find that around one third of U.S. households

are hand-to-mouth, while total household debt in the U.S. is close to 80% of GDP. Since our

model cannot capture all the nuances of debt and household characteristics (short- versus

long-term debt, hand-to-mouth agents with different levels of illiquid assets), we chose a

calibration that is conservative in terms of the private wealth effects it generates.41 The

estimated parameter values are reported in Appendix E.

Figure 7 shows the results. The fit of the model improves considerably with respect to

the standard RANK. A contractionary monetary shock generates a recession and a drop in

consumption and inflation. The change in the interest rate has a strong effect on borrow-

ers’ consumption, which cannot be completely smoothed because of the sensitivity of the

borrowing cost to the debt level. This effect offsets the absence of wealth effects coming

from government transfers, improving the quantitative performance of the model when

fiscal variables are set to match the data.42

40See Benigno et al. (2019) for a detailed derivation.
41We performed several robustness checks at different levels of the fraction of borrowers and debt-to-GDP

ratio, and the results do not change substantially, either in terms of the estimated parameter values or of the
corresponding IRFs to a monetary shock.

42Similarly to the IRFs in RANK, the TANK model has difficulty matching the impulse response of con-
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FIGURE 7: Heterogeneous Agent Model impulse response functions to a monetary shock.
Gray area represents 95% confidence intervals.

Another important feature of Figure 7 is the failure of the model to generate a sub-

stantial drop in investment, which in turn attenuates the overall effect on output. The

reason for this result is related to the nature of private wealth effects. An increase in the

nominal interest rate generates a redistribution from borrowers to savers. Because borrow-

ers’ MPC is larger than savers’, overall consumption drops. What do savers do with their

increased wealth? Since they do not consume, they invest. Absent strong government-

induced wealth effects, the higher interest rate and the induced recession are not enough

to generate a drop in investment. Thus, while a redistribution from high to low MPC agents

amplifies the effects of a monetary shock on consumption, that same redistribution damp-

ens its effect on investment. This result suggests that a combination of stronger wealth

effects and financial frictions that constrain investment might be needed to reconcile the

New Keynesian model with the data.

sumption 10 quarters after the monetary shock.
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5 Conclusion

In this paper, we provided new analytical tools to understand the role of wealth effects on

the transmission mechanism of monetary policy, as well as to quantify their importance

in modern RANK and HANK models. We provided a decomposition of the equilibrium

consumption response into a general equilibrium substitution effect, a wealth effect, and a

GE amplification. Our results showed that the RANK model is unable to generate strong

enough wealth effects when it is required to match the observed path of fiscal and mone-

tary variables jointly. Finally, we constructed a heterogeneous agent model that is able to

generate the level of wealth effects observed in the data.

Our analysis also uncovered a limitation of HANK models: they may fail in match-

ing the response of investment. Since a contractionary monetary policy shock tends to

redistribute towards savers, the response of investment tends to be mitigated related to a

RANK model that generates the same level of wealth effect. Future research should focus

on understanding how the redistribution channel interacts with investment decisions.
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Appendix: For Online Publication

A Proofs

Proof of Lemma 1.
Integrating the Euler equation between 0 and t, we get

ct = c0 + σ−1
∫ t

0
(is − πs − ρ) ds (23)

Multiplying both sides by e−ρt and integrating between 0 and infinity, we get

∫ ∞

0
e−ρtctdt =

c0

ρ
+

σ−1

ρ

∫ ∞

0
e−ρt (it − πt − ρ) dt

Define C ≡ ρ
∫ ∞

0 e−ρtctdt. Then, we can rewrite the expression above as

C = c0 + σ−1
∫ ∞

0
e−ρt (it − πt − ρ) dt

or
c0 = C− σ−1

∫ ∞

0
e−ρt (it − πt − ρ) dt

Replacing this expression in (23), we get

ct = σ−1
∫ t

0
(is − πs − ρ) ds− σ−1

∫ ∞

0
e−ρt (it − πt − ρ) dt + C (24)

Moreover, integrating the Phillips curve forward, we get (and ruling out explosive paths)

πt = κ
∫ ∞

t
e−ρ(s−t)csds (25)

Thus, any solution of (1)-(2) is a solution to (23)-(25) together with some value for C. Im-
posing that

∫ ∞
0 e−ρtctdt = 0 implies that C = 0, and (24)-(25) collapses to (10)-(11).

By solving the system (10)-(11) it is straightforward to see that the solution is unique.

Proof of Proposition 1.
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Let’s write consumption as the sum of cS
t and other terms

ct = cS
t − σ−1

∫ t

0

(
πs − πS

s

)
ds + σ−1

∫ ∞

0
e−ρs

(
πs − πS

s

)
ds︸ ︷︷ ︸

=cH
t

+C

Plugging into the Phillips Curve

πt = κ
∫ ∞

t
e−ρ(s−t)cS

s ds︸ ︷︷ ︸
=πS

t

−σ−1κ
∫ ∞

t
e−ρ(s−t)

∫ s

0

(
πz − πS

z

)
dzds+

σ−1κ
∫ ∞

t
e−ρ(s−t)ds

∫ ∞

0
e−ρs

(
πs − πS

s

)
ds + κ

∫ ∞

t
e−ρ(s−t)dsC

and after some algebra

πt = πS
t − σ−1 κ

ρ

∫ t

0

(
πz − πS

z

)
dz− σ−1 κ

ρ
eρt
∫ ∞

t
e−ρz

(
πz − πS

z

)
dz+

σ−1 κ

ρ

∫ ∞

0
e−ρs

(
πs − πS

s

)
ds +

κ

ρ
C

Differentiating with respect to time, we get

π̇t = π̇S
t − σ−1κeρt

∫ ∞

t
e−ρz

(
πz − πS

z

)
dz

Differentiating with respect to time once more, we get

˙̇πt = ˙̇πS
t − σ−1κρeρt

∫ ∞

t
e−ρz

(
πz − πS

z

)
dz + σ−1κ

(
πt − πS

t

)
which can be rewritten as

˙̇πt − ρπ̇t − σ−1κπt = ˙̇πS
t − ρπ̇S

t − σ−1κπS
t

It is straightforward to see that a solution to the non-homogeneous equation is πt = πS
t .

For the homogeneous solution, guess that it is given by πt = eωt, so that π̇t = ωeωt and
˙̇πt = ω2eωt. Plugging in

ω2 − ρω− σ−1κ = 0

Hence

ω =
ρ +

√
ρ2 + 4σ−1κ

2
> 0 and ω =

ρ−
√

ρ2 + 4σ−1κ

2
< 0
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Thus, the general solution is
πt = πS

t + c1eωt + c2eωt

for some constants c1 and c2. Since we are focusing on bounded solutions, c1 = 0. Plugging
into the original expression for πt, we get

πt = πS
t − σ−1 κ

ρ

∫ t

0

(
πS

z + c2eωz − πS
z

)
dz− σ−1 κ

ρ

∫ ∞

t
e−ρ(z−t)

(
πS

z + c2eωz − πS
z

)
dz+

σ−1 κ

ρ

∫ ∞

0
e−ρs

(
πS

s + c2eωs − πS
s

)
ds +

κ

ρ
C

After some algebra, we get
πt = πS

t − c2 + c2eωt +
κ

ρ
C

Using that πt = πS
t + c2eωt and matching coefficients, we get

c2eωt = −c2 + c2eωt +
κ

ρ
C

c2 =
κ

ρ
C

Plugging in πt = πS
t + κ

ρ eωtC into ct, we get

ct = cS
t − σ−1 κ

ρ

∫ t

0
eωsdsC + σ−1 κ

ρ

∫ ∞

0
e−ρseωsdsC + C

or
ct = cS

t +
ω

ρ
eωtC

Proof of Corollary 1.1.
Immediate from the fact that, given {it}∞

t=0, {cS
t , πS

t }∞
t=0 is unique and ω

ρ eωt depends
only on the parameters of the model.

Proof of Lemma 2.
Consider an economy characterized by the following system of equations:

ċt = σ−1(it − πt − ρ)

π̇t = ρπt + κct

it = ρ + φπt + εt
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where φ ∈
(

1, 1 + ρ2

4κσ−1

]
.The solution to this system is given by

c∗t = − σ−1

δ− δ

∫ ∞

t

(
δe−δ(s−t) − δe−δ(s−t)

)
εsds

π∗t = −σ−1κ

δ− δ

∫ ∞

t

(
e−δ(s−t) − e−δ(s−t)

)
εsds

i∗t = ρ− φ
σ−1κ

δ− δ

∫ ∞

t

(
e−δ(s−t) − e−δ(s−t)

)
εsds + εt.

where

δ =
ρ +

√
ρ2 + 4(1− φ)κσ−1

2
, δ =

ρ−
√

ρ2 + 4(1− φ)κσ−1
2

.

We want to show that

− σ−1

ω−ω

∫ ∞

t

(
ωe−ω(s−t) −ωe−ω(s−t)

)
(i∗s − ρ) ds = − σ−1

δ− δ

∫ ∞

t

(
δe−δ(s−t) − δe−δ(s−t)

)
εsds.

We will work with the LHS of the previous equality. Plugging in the solution for {i∗t }∞
t=0,

we get

− σ−1

ω−ω

∫ ∞

t

(
ωe−ω(s−t) −ωe−ω(s−t)

)
(i∗s − ρ) ds = − σ−1

ω−ω

∫ ∞

t

(
ωe−ω(s−t) −ωe−ω(s−t)

)
εsds+

σ−1

ω−ω
φ

σ−1κ

δ− δ

∫ ∞

t

∫ ∞

s

(
ωe−ω(s−t) −ωe−ω(s−t)

) (
e−δ(z−s) − e−δ(z−s)

)
εzdzds (26)

Consider the last integral

∫ ∞

t

∫ ∞

s

(
ωe−ω(s−t) −ωe−ω(s−t)

) (
e−δ(z−s) − e−δ(z−s)

)
εzdzds
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Let’s study the different terms separately. Consider first

∫ ∞

t

∫ ∞

s

(
ωe−ω(s−t) −ωe−ω(s−t)

) (
e−δ(z−s) − e−δ(z−s)

)
εzdzds

=
∫ ∞

t

∫ z

t

(
ωe−ω(s−t) −ωe−ω(s−t)

) (
e−δ(z−s) − e−δ(z−s)

)
εzdsdz

=
∫ ∞

t

∫ z

t

(
ωeωte−δze(δ−ω)s −ωeωte−δze(δ−ω)s −ωeωte−δze(δ−ω)s + ωeωte−δze(δ−ω)s

)
εzdsdz

=
∫ ∞

t

(
δ− δ

(δ−ω)
(
δ−ω

) (ωe−ω(z−t) −ωe−ω(z−t)
)
+

ω (δ−ω)−ω (δ−ω)

(δ−ω) (δ−ω)
e−δ(z−t)−

ω
(
δ−ω

)
−ω

(
δ−ω

)(
δ−ω

) (
δ−ω

) e−δ(z−t)

)
εzdz

Note that (δ−ω)
(
δ−ω

)
= (δ−ω)

(
δ−ω

)
= φκσ−1 and (δ−ω) (δ−ω) =

(
δ−ω

) (
δ−ω

)
=

−φκσ−1. Hence

∫ ∞

t

∫ ∞

s

(
ωe−ω(s−t) −ωe−ω(s−t)

) (
e−δ(z−s) − e−δ(z−s)

)
εzdzds =

δ− δ

φκσ−1

∫ ∞

t

(
ωe−ω(z−t) −ωe−ω(z−t)

)
εzdz−

∫ ∞

t

(
ω (δ−ω)−ω (δ−ω)

φκσ−1 e−δ(z−t) −
ω
(
δ−ω

)
−ω

(
δ−ω

)
φκσ−1 e−δ(z−t)

)
εzdz

Moreover, note that ω (δ−ω) − ω (δ−ω) = (ω−ω) δ and ω
(
δ−ω

)
− ω

(
δ−ω

)
=

(ω−ω) δ, hence

∫ ∞

t

∫ ∞

s

(
ωe−ω(s−t) −ωe−ω(s−t)

) (
e−δ(z−s) − e−δ(z−s)

)
εzdzds =

δ− δ

φκσ−1

∫ ∞

t

(
ωe−ω(z−t) −ωe−ω(z−t)

)
εzdz− ω−ω

φκσ−1

∫ ∞

t

(
δe−δ(z−t) − δe−δ(z−t)

)
εzdz

Plugging back into (26), we get

ct =
σ−1

ω−ω

∫ ∞

t

(
ωe−ω(z−t) −ωe−ω(z−t)

)
εzdz− σ−1

δ− δ

∫ ∞

t

(
δe−δ(z−t) − δe−δ(z−t)

)
εzdz−

σ−1

ω−ω

∫ ∞

t

(
ωe−ω(s−t) −ωe−ω(s−t)

)
εsds

and hence

ct = −
σ−1

δ− δ

∫ ∞

t

(
δe−δ(s−t) − δe−δ(s−t)

)
εsds.
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Next, we show that ct = − σ−1

ω−ω

∫ ∞
t

(
ωe−ω(s−t) −ωe−ω(s−t)

)
(i∗s − ρ) ds is the unique

purely forward-looking solution of the system (1)-(2). Recall that the solution to the system
can be written as

ct = cS
t +

ω

ρ
eωtC (27)

with

cS
t =

σ−1ω

ω−ω
eωt

∫ t

0

(
e−ωs − e−ωs

)
(is − ρ) ds +

σ−1

ω−ω

(
ωeωt −ωeωt

) ∫ ∞

t
e−ωs (is − ρ) ds

Since C is independent of t and equal to zero when it = ρ for all t, it has to take the
following form:

C =
∫ ∞

0
Ωs (is − ρ) ds

Plugging cH
t and C into (27), we get

ct =
σ−1ω

ω−ω
eωt

∫ t

0

(
e−ωs − e−ωs

)
(is − ρ) ds+

σ−1

ω−ω

(
ωeωt −ωeωt

) ∫ ∞

t
e−ωs (is − ρ) ds+

ω

ρ
eωt

∫ t

0
Ωs (is − ρ) ds +

ω

ρ
eωt

∫ ∞

t
Ωs (is − ρ) ds

where we divided the integral in C into a backward-looking and a forward-looking term.
Combining terms, we get

ct = ωeωt
∫ t

0

(
σ−1

ω−ω
e−ωs − σ−1

ω−ω
e−ωs +

1
ρ

Ωs

)
(is − ρ) ds+

σ−1

ω−ω

(
ωeωt −ωeωt

) ∫ ∞

t
e−ωs (is − ρ) ds +

ω

ρ
eωt

∫ ∞

t
Ωs (is − ρ) ds (28)

This expression is purely forward-looking if and only if σ−1

ω−ω e−ωs − σ−1

ω−ω e−ωs + 1
ρ Ωs = 0

almost surely, or

Ωs = −
σ−1ρ

ω−ω

(
e−ωs − e−ωs

)
Plugging this expression into (28), we get

ct = −
σ−1

ω−ω

∫ ∞

t

(
ωe−ω(s−t) −ωe−ω(s−t)

)
(is − ρ) ds

and

C = − σ−1ρ

ω−ω

∫ ∞

0

(
e−ωs − e−ωs

)
(is − ρ) ds
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Note that C is finite if and only if it = O
(
e−θt) for some θ > |ω|. This condition holds

since the sequence of shocks decays sufficiently fast.

Proof of Proposition 2.
Immediate from the proof of Proposition 1.

Proof of Lemma 3.
We have

lim
t→∞

ct = lim
t→∞

cS
t + lim

t→∞

ω

ρ
eωtC

and
lim
t→∞

πt = lim
t→∞

πS
t + lim

t→∞

κ

ρ
eωtC

Since ω < 0, the second term of both equations is equal to zero. Thus, we only need to
determine limt→∞ cS

t and limt→∞ πS
t .

We have

cS
t = σ−1

∫ t

0
(is − ρ) ds− σ−1

∫ ∞

0
e−ρs (is − ρ) ds− σ−1

∫ t

0
πS

s ds + σ−1
∫ ∞

0
e−ρsπS

s ds

πS
t = κ

∫ ∞

t
e−ρ(s−t)cS

s ds

Plugging cH
t into πH

t , we get

πS
t = κ

∫ ∞

t
e−ρ(s−t)

(
σ−1

∫ s

0
(iz − ρ) dz− σ−1

∫ ∞

0
e−ρz (iz − ρ) dz− σ−1

∫ s

0
πS

z dz+

σ−1
∫ ∞

0
e−ρzπS

z dz
)

ds

After some algebra

πS
t = σ−1 κ

ρ

∫ t

0
(iz − ρ) dz + σ−1 κ

ρ
eρt
∫ ∞

t
e−ρz (iz − ρ) dz− σ−1 κ

ρ

∫ ∞

0
e−ρz (iz − ρ) dz−

σ−1 κ

ρ

∫ t

0
πS

z dz− σ−1 κ

ρ
eρt
∫ ∞

t
e−ρzπS

z dz + σ−1 κ

ρ

∫ ∞

0
e−ρzπS

z dz

Differentiating with respect to time, we get

π̇S
t = σ−1κeρt

∫ ∞

t
e−ρz (iz − ρ) dz− σ−1κeρt

∫ ∞

t
e−ρzπS

z dz
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Differenting with respect to time once more, we get

π̈S
t − ρπ̇S

t − σ−1κπS
t = −σ−1κ (it − ρ)

The solution to this second-order differential equation is

πS
t =

σ−1κ

ω−ω
eωt

∫ t

0
(e−ωs − e−ωs) (is − ρ) ds +

σ−1κ

ω−ω
(eωt − eωt)

∫ ∞

t
e−ωs (is − ρ) ds

Thus

lim
t→∞

πS
t =

σ−1κ

ω−ω
lim
t→∞

[∫ t
0 e−ωs(is − ρ)ds

e−ωt +

∫ ∞
t e−ωs(is − ρ)ds

e−ωt

]

=
σ−1κ

ω−ω
lim
t→∞

[
− e−ωt(it − ρ)

ωe−ωt +
e−ωt(it − ρ)

ωe−ωt

]
= 0

Plugging into cS
t , we get

cS
t = σ−1 ω

ω−ω
eωt

∫ t

0

(
e−ωz − e−ωz

)
(iz − ρ) dz− σ−1 ωeωt −ωeωt

ω−ω

∫ ∞

t
e−ωz (iz − ρ) dz

Thus,

lim
t→∞

cS
t =

σ−1

ω−ω
lim
t→∞

[
ω

∫ t
0 e−ωz (iz − ρ) dz

e−ωt + ω

∫ ∞
t e−ωz (iz − ρ) dz

e−ωt

]

=
σ−1

ω−ω
lim
t→∞

[
−ω

ω

e−ωt (it − ρ)

e−ωt +
ω

ω

e−ωt (it − ρ)

e−ωt

]
= 0

Proof of Proposition 3.
Immediate from equation (13).

Proof of Lemma 4. Average consumption in the presence of long-term bonds and zero
transfers can be written as

C = ρ
∫ ∞

0
e−ρt [(1− τ)yt + b(it − πt − ρ)] dt− ρb

∫ ∞

0
e−(ρ+m)t(it − ρ)dt.
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Using the spending-income spiral and the spending-inflation spiral, we can rewrite this as

C =
ρ

τ − σωb

(∫ ∞

0
e−ρtb(it − πS

t − ρ)dt− b
∫ ∞

0
e−(ρ+m)t(it − ρ)dt

)
Replacing with the expression for πS

t , and after some algebra,

C =
ρ

τ − σωb

(∫ ∞

0
e−ωtb(it − ρ)dt− b

∫ ∞

0
e−(ρ+m)t(it − ρ)dt

)
It is immediate to see that ∂C

∂it
≥ 0 if and only if m ≥ −ω and ∂C

∂it
< 0 otherwise.

Proof of Proposition 4.
Let Yt = [Y′J,tYP,t′ ]

′ denote the N-dimensional of the (log-linearized) endogenous vari-
ables, excluding the nominal interest rates. We will treat consumption effectively as a pre-
determined variable, where the initial condition for consumption is pinned down by C.
Then, YJ,t denotes the (j − 1)-dimensional vector of jump variables except consumption,
and YP,t denotes the (p + 1)-dimensional vector of predetermined variables in addition to
consumption, where N = j + p. The dynamics Yt can be written as

Yt+1 = AYt + b(it − ρ) (29)

where A is a N × N matrix of coefficients and b is a N × 1 vector.
Given the certainty-equivalence property of linearized models, without loss of general-

ity we consider a perfect foresight dynamic system. Consider next the eigendecomposition
of the matrix A

A =

[
V11 V12

V21 V22

]
︸ ︷︷ ︸

V

[
Λ11 0

0 Λ22

]
︸ ︷︷ ︸

Λ

[
V11 V12

V21 V22

]
︸ ︷︷ ︸

V−1

(30)

where V is the matrix of eigenvectors of A and Λ is a diagonal matrix of eigenvalues. For
this proof, we need to assume that a version of the Blanchard-Kahn condition is satisfied.
We define the generalized Blanchard-Kahn condition as follows.

Definition 2. Let A denote the matrix of coefficients defined in (29). A generalized Blanchard-Kahn
condition is satisfied if

1. The number of eigenvalues of A with absolute value greater than one equals p + 1, where p is
the number of predetermined variables in the system.

2. The matrix V11 defined in equation (30) is invertible.

The condition above coincides with the standard Blanchard-Kahn conditions if we treat
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consumption as predetermined and the nominal interest rate as exogenous. In what fol-
lows, we assume that this condition is satisified.

By adopting the change of coordinates, Ỹt = V−1Yt and b̃ = V−1b, we can write the
system in decoupled form

Ỹt+1 = ΛỸt + b̃(it − ρ)

Suppose that all elements in the diagonal of Λ11 are larger than one in absolute value.
Then, we can write

ỸJ,t = −Λ−1
11 b̃J(it − ρ) + Λ−1

11 ỸJ,t+1 ⇒ ỸJ,t = −
∞

∑
k=1

Λ−k
11 b̃J(it+k−1 − ρ)

Note that we can write ỸJ,t = V11YJ,t + V12YP,t. Then,

YJ,t = −(V11)−1V12YP,t − (V11)−1
∞

∑
k=1

Λ−k
11 b̃J(it+k−1 − ρ)

assuming that V11 is invertible.
Suppose all elements in the diagonal of Λ22 are smaller than one in absolute value.

Then, we can write

ỸP,t+1 = Λ22ỸP,t + b̃J(it − ρ)⇒ ỸP,t = Λt
22Ỹp,0 −

t

∑
k=0

Λk
22b̃P(it−k−1 − ρ)

Note that we can write ỸP,t = V21YJ,t + V22YP,t. Then,

[
V22 −V21(V11)−1V12

]
Yp,t = Λt

22

[
V22 −V21(V11)−1V12

]
Yp,0 + V21(V11)−1

∞

∑
k=1

Λ−k
11 b̃J(it+k−1 − ρ)

−
t

∑
k=0

Λk
22b̃P(it−k−1 − ρ)−Λt

22V21(V11)−1
∞

∑
k=1

Λ−k
11 b̃J(ik−1 − ρ)

Using
[
V22 −V21(V11)−1V12] = V22 by the inverse of a partitioned matrix, then

Yp,t = V11Λt
22V−1

11 Yp,0 + Zp,t
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where Zp,t is a function of the sequence of nominal interest rates.

Zp,t ≡ V11V21(V11)−1
∞

∑
k=1

Λ−k
11 b̃J(it+k−1 − ρ)−V11

t

∑
k=0

Λk
22b̃P(it−k−1 − ρ)−

V11Λt
22V21(V11)−1

∞

∑
k=1

Λ−k
11 b̃J(ik−1 − ρ)

Using the fact that the initial condition for all predetermined variables is equal to zero,
except for consumption, we can write

ct =
p+1

∑
k=0

ν̃kλt
kc0 + Zc,t

where λk is the k-th element in the diagonal of λ22.
Averaging the equation above over all t and writing c0 in terms of C, we obtain

ct =
p+1

∑
k=0

νkλt
kC + Z̃c,t

where Z̃c,t is a function of the sequence of nominal interest rates, for a given set of coeffi-
cients νk. Recall that by the properties of the Marshallian demand, ct = cH

t + C. Moreover,
if C = 0, then ct = cS

t (i.e., the Hicksian demand evaluated at the inflation rate consis-
tent with the Hicksian demand). Thus, by setting Z̃c,t = cS

t , we obtain the result in the
proposition.

Importantly, the properties of the Hicksian demand are not affected by the presence of
habit formation. The utility of the household is given by

U =
∞

∑
t=0

βt log (Ct − bCt−1)

Log-linearizing the expression above around the steady state, and assuming c−1 = 0,
we obtain

0 =
∞

∑
t=0

βt ct − bct−1

1− b
⇒

∞

∑
t=0

βtct = bβ
∞

∑
t=1

βt−1ct−1

rearranging the expression above
∞

∑
t=0

βtct = 0
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Hence, average consumption is equal to zero for the Hicksian demand even in the case
of preferences with habit.

Proof of Proposition 5. We log-linearize the expressions around a steady state in which
borrowers are constrained and savers are unconstrained. For simplicity, we focus on the
steady state Cb = Cs = C, which implies Nb = Ns = N. The Euler equation for savers can
be written as

ċs,t =
it − πt − ρ

σ

The labor supply condition can be written as

wt − pt = φnj,t + σcj,t

Log-linearizing the market clearing conditions for consumption and labor, we obtain

χcb + (1− χb)cs = ct

χnb + (1− χb)ns = nt

The budget constraint for savers can be written as

bsḃs,t = (it − πt − ρ)bs + ρbsbs,t + (1− α)(wt − pt + ns,t)+

(1− τ)ct − (1− α)(wt − pt + ct)

1−ω
+ Ts,t − cs,t

The budget constraint for borrowers can be written as

cb,t = (1− α)(wt − pt + nb,t) + Tb,t − (it − πt − ρ)dP

where 1− α ≡ W
PY is the labor share, Tb,t ≡

T̃b,t−T̃b
Y , and dp ≡

Dp
Y .

Aggregating the labor supply condition, we obtain

wt − pt = (φ + σ)ct

Suppose the government transfers to borrowers are a function of aggregate consump-
tion

Tb,t = ψbct

Combining the two previous expressions, and using the labor supply condition to elim-
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inate nb,t, we obtain
cb,t = χcct − χr(it − πt − ρ)

where

χc ≡
(1− α)(1 + φ−1)(φ + σ)− ψb

1 + (1− α)φ−1σ

χr ≡
dp

1 + (1− α)φ−1σ

From the market clearing condition for goods, we obtain the consumption of savers

cs =
1−ωχc

1−ω
ct +

ωχr

1−ω
(it − πt − ρ)

Combining the expression above with the Euler equation, we obtain

ċt =
1−ω

1−ωχc
σ−1 (it − πt − ρ)− ωχr

1−ωχc
(i̇t − π̇t)

The optimality condition for firms can be written as

p∗t (j) = (ρ + ρδ)
∫ ∞

t
e−(ρ+ρδ)(z−t)wzdz

Log-linearizing the expression for the price index, we obtain

pt = ρδ

∫ t

−∞
e−ρδ(t−z)p∗z dz

Differentiating the expression above, we obtain

πt = ρδ(p∗t − pt)

Differentiating the expression again, we obtain

π̇t = ρδ(ρ + ρδ)p∗t − (ρ + ρδ)ρδwt − ρδπt

= ρπt − (ρ + ρδ)ρδ(wt − pt)

Using the expression for the real wage, we obtain the New Keynesian Phillips curve

π̇t = ρπt − κct (31)
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where κ ≡ ρδ(ρ + ρδ)(φ + σ).
Combining the expression above with the evolution of consumption, we obtain

ċt =
1−ω

1−ωχc
σ−1 (it − πt − ρ)− ωχr

1−ωχc
(i̇t − ρ(it − ρ) + ρ(it − πt − ρ) + κct)

=
(1−ω)σ−1 − ρωχr

1−ωχc
(it − πt − ρ)− ωχr

1−ωχc
(i̇t − ρ(it − ρ))− ωχr

1−ωχc
κct

The aggregate Euler equation can then be written as

ċt = σ̃−1(it − πt − ρ)− δct + vt

where

σ̃−1 =
(1−ω)σ−1 − ρωχr

1−ωχc

δ =
ωχr

1−ωχc
κ

vt = −
ωχr

1−ωχc
(i̇t − ρ(it − ρ))

Combining the budget constraints for borrowers and savers, we obtain the intertempo-
ral budget constraint

∫ ∞

0
e−ρtctdt =

∫ ∞

0
e−ρt

[
(1− τ)yt + b(it − πt − ρ) + Tt

]
dt

where Tt ≡ ωTb,t + (1−ω)Ts,t.

Proof of Proposition 6.
This proof consists of two steps. First, we provide a solution to the dynamic system

in terms of nominal interest rate and aggregate consumption C. Second, we combine the
solution to the dynamic system with the Slutsky equation to obtain our consumption de-
composition.

Solution to the dynamic system. The dynamic system is now given by[
ċt

π̇t

]
=

[
−δ −σ̃−1

−κ ρ

] [
ct

πt

]
+

[
νt

0

]

where νt ≡ σ̃−1(it − ρ) + vt.
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The eigenvalues of the system are given by

ωT ≡
ρ− δ +

√
(ρ− δ)2 + 4(ρδ + κσ̃−1)

2
, ωT ≡

ρ− δ−
√
(ρ− δ)2 + 4(ρδ + κσ̃−1)

2

Suppose that σ̂−1 > 0. Then, ωT > 0 and ωT < 0, given that δ ≥ 0. We can write the
system in matrix form as follows:

Żt = AZt + Bνt

The matrix A can be written as

A = VΩV−1

where

V =

[
ρ−ω

κ
ρ−ω

κ

1 1

]
; V−1 =

κ

ω−ω

[
−1 ρ−ω

κ

1 − ρ−ω
κ

]
; Ω =

[
ω 0
0 ω

]

Decoupling the system, we obtain

żt = Ωzt + bνt

where zt = V−1Zt and b = V−1B.
Solving the equation with positive eigenvalue forward and the one with negative eigen-

value backward, we obtain

z1,t = −b1

∫ ∞

t
e−ω(z−t)νzdz

z2,t = eωtz2,0 + b2

∫ t

0
eω(t−z)νzdz

Consumption and inflation are then given by

ct = V12

(
V21c0 + V22π0

)
eωt −V11V11

∫ ∞

t
e−ω(z−t)νzdz + V12V21

∫ t

0
eω(t−z)νzdz

πt = V22

(
V21c0 + V22π0

)
eωt −V21V11

∫ ∞

t
e−ω(z−t)νzdz + V22V21

∫ t

0
eω(t−z)νzdz

63



Average consumption is given by

C = V12

(
V21c0 + V22π0

) ρ

ρ−ω
− ρ

ρ−ω
V11V11

∫ ∞

0

(
e−ωz − e−ρz

)
νzdz+

ρ

ρ−ω
V12V21

∫ ∞

0
e−ρzνzdz

Consumption is then given by

ct =
ρ−ω

ρ
Ceωt + c∗t

where

c∗t = −V11V11
∫ ∞

t
e−ω(z−t)νzdz + V12V21

∫ t

0
eω(t−z)νzdz

+

(
ρ−ω

ρ−ω
V11V11

∫ ∞

0

(
e−ωz − e−ρz

)
νzdz−V12V21

∫ ∞

0
e−ρzνzdz

)
eωt.

Inflation is given by
πt =

κ

ρ−ω
Ceωt + π∗t ,

where

π∗t = −V21V11
∫ ∞

t
e−ω(z−t)νzdz + V22V21

∫ t

0
eω(t−z)νzdz

+
κ

ρ−ω

(
ρ−ω

ρ−ω
V11V11

∫ ∞

0

(
e−ωz − e−ρz

)
νzdz−V12V21

∫ ∞

0
e−ρzνzdz

)
eωt.

Note that we can write c∗t and π∗t as follows:

c∗t = − (ω− ρ)eωt − (ω− ρ)eωt

ω−ω

∫ ∞

t
e−ωzνzdz +

ρ−ω

ω−ω

∫ t

0

(
e−ωz − e−ωz

)
eωtνzdz

π∗t =
κ

ω−ω

(
eωt − eωt

) ∫ ∞

t
e−ωzνzdz +

κ

ω−ω
eωt

∫ t

0

(
e−ωz − e−ωz

)
νzdz.

where
νt =

1−ω

1−ωχc
σ−1(it − ρ)− ωχr

1−ωχc
i̇t.
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Consumption Decomposition. Consumption of borrowers can be written as

cb,t = χc (ωcb,t + (1−ω)cs,t)− χr(it − πt − ρ)

=
1−ω

1−ωχc
χccs,t −

χr

1−ωχc
(it − πt − ρ)

Consumption of savers can be decomposed using the Slutsky decomposition

cs,t = cH
s,t + Cs

where
Cs =

1−ωχc

1−ω
C +

ωχr

1−ω
ρ
∫ ∞

0
e−ρt(it − πt − ρ)dt

Aggregate consumption can then be written as

ct = ω

(
1−ω

1−ωχc
χc

(
cH

s,t + Cs

)
− χr

1−ωχc
(it − πt − ρ)

)
+ (1−ω)

(
cH

s,t + Cs

)
= ω

(
1−ω

1−ωχc
χccH

s,t −
χr

1−ωχc
(it − πt − r̂)

)
+ C + (1−ω)cH

s,t

where r̂ = ρ
∫ ∞

0 e−ρt(it − πt).
Using the expression (A) for πt, we obtain

ct = (1−ω)cS,∗
t + ω

1−ω

1−ωχc
χccS,∗

t −
ωχr

1−ωχr
(it − π∗t − r̂∗) + C +

(
ω + δ

ρ
eωt − 1

)
C

where r̂∗ ≡ ρ
∫ ∞

0 e−ρs(is−π∗s )ds and cS,∗
t is the Hicksian demand of savers evaluated at π∗t .
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B Hicksian Demand

B.1 Derivation of the Hicksian demand

The Hicksian demand of the non-linear model is obtained as the solution to the following
problem

min
{Ct}∞

t=0

∫ ∞

0
e−
∫ t

0 (is−πs)dsCtdt

st
∫ ∞

0
e−ρt C1−σ

t
1− σ

dt ≥ U,

for some U ∈ R. The FOCs of this problem are given by

e−
∫ t

0 (is−πs)ds = λe−ρtC−σ
t ∀t,

where λ is the Lagrange multiplier associated to the constraint. This implies that

Ct = e
1
σ

∫ t
0 (is−πs)dsλ

1
σ e−

ρ
σ t =⇒ e−ρtC1−σ

t = e−
ρ
σ te−

σ−1
σ

∫ t
0 (is−πs)dsλ

1−σ
σ ,

and hence

λ =

 (1− σ)U∫ ∞
0 e−

ρ
σ te−

σ−1
σ

∫ t
0 (is−πs)dsdt

 σ
1−σ

.

Replacing in the FOC for Ct, we get

Ct =
e−

ρ
σ te

1
σ

∫ t
0 (is−πs)ds[∫ ∞

0 e−
ρ
σ te−

σ−1
σ

∫ t
0 (is−πs)dsdt

] 1
1−σ

[
(1− σ)U

] 1
1−σ .

Log-linearizing around the zero inflation steady state we get,

cS
t =

1
σ

∫ t

0
(is − πs − ρ)ds− 1

σ

∫ ∞

0
e−ρt(is − πs − ρ)dt.

The present discounted value of the substitution effect is given by

∫ ∞

0
e−ρtcS

t dt =
1
σ

∫ ∞

0
e−ρt

∫ t

0
(is − πs − ρ)dsdt− 1

σ

∫ ∞

0
e−ρt

∫ ∞

0
e−ρs(is − πs − ρ)ds,

=
1

ρσ

∫ ∞

0
e−ρt(is − πs − ρ)ds− 1

ρσ

∫ ∞

0
e−ρs(is − πs − ρ)ds,

= 0.
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B.2 The Neo-Fisherian property of the Hicksian inflation

As derived in the proof of lemma 3, the Hicksian inflation is given by

πS
t =

σ−1κ

ω−ω
eωt

∫ t

0
(e−ωs − e−ωs) (is − ρ) ds +

σ−1κ

ω−ω
(eωt − eωt)

∫ ∞

t
e−ωs (is − ρ) ds

The derivative of πS
t with respect to is is given by

∂πS
t

∂is
=

{
σ−1κ
ω−ω eωt(e−ωs − e−ωs) > 0, if t > s

σ−1κ
ω−ω (e

ωt − eωt)e−ωs > 0, if t ≤ s

for t > 0.
Hence, Hicksian inflation reacts positively to past or future nominal interest rate, for

t > 0.
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C Derivation of TANK model in continuous time

Environment

Households. We consider an economy with two types of households that differ in their
discount rates. There is a mass ω of high-discount agents denoted by borrowers and indexed
by b, and a mass 1−ω of low-discount agents denoted by savers and indexed by s. 43

Households receive labor income WtNj,t, profits from corporate holdings Πj,t, and gov-
ernment transfers PtT̃j,t, for j ∈ {b, s}. We assume that corporations are owned by savers,
so Πb,t = 0 for t ≥ 0. The discount rate of household j is denoted by ρj, where ρb ≥ ρs.
Households are subject to a borrowing constraint that limits the maximum amount of debt
they can have.

The problem of household j ∈ {b, s} is given by

max
{Cj,t,Nk,t}∞

0

∫ ∞

0
e−ρjt

C1−σ
j,t

1− σ
−

N1+φ
j,t

1 + φ

 dt,

subject to the flow budget constraint

Ḃj,t = itBj,t + WtNj,t + Πj,t + PtT̃j,t − PtCj,t,

and the borrowing constraint
Bj,t

Pt
≥ −Dp,

where Dp denotes the maximum amount of private debt.
The optimality conditions for this problem can be written as

Wt

Pt
= Nφ

j,tC
σ
j,t

Ċj,t

Cj,t
=

it − πt − ρj

σ
+ µj,t

where µj,t > 0 if the borrowing constraint is binding and µj,t = 0 if it is slack.

Firms. There are two types of firms in the economy: final-goods producers and intermediate-
goods producers. Final-goods producers operate in a perfectly competitive market and
combine a unit mass of intermediate goods Yt(j), for j ∈ [0, 1], using the production func-

43Note that the RANK model is a special case in which ω = 0.
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tion

Yt =

(∫ 1

0
Yt(j)

ε−1
ε dj

) ε
ε−1

(32)

The problem of the final-good producer is given by

max
[Yt(j)]j∈[0,1]

PtYt −
∫ 1

0
Pt(j)Yt(j)dj

subject to (32).
The solution to the problem above gives the standard CES demand

Yt(j) =
(

Pt(j)
Pt

)−ε

Yt

where Pt =
(∫ 1

0 Pt(j)1−εdj
) 1

1−ε .
Intermediate goods are produced using the production function Yt(j) = Nt(j). Sales of

intermediate goods are taxed at the constant rate τ. Firms choose prices subject to Calvo
pricing, that is, they choose P∗t (j) to maximize

max
P∗t (j)

∫ ∞

t
ρδe−

∫ z
t (is+ρδ)ds

[
(1− τ)P∗t (j)

(
Pt(j)∗

Pz

)−ε

Yz −Wz

(
Pt(j)∗

Pz

)−ε

Yz

]
dz

where ρδ is the arrival rate of the Poisson process determining the periods of price adjust-
ment.

The first-order condition is given by

P∗t (j) =
ε

ε− 1

∫ ∞

t

e−
∫ z

t (is+ρδ)dsPε
z Yz(j)∫ ∞

t e−
∫ z′

t (is+ρδ)dsPε
z′Yz′(j)dz′

Wz

1− τ
dz

Government. The government chooses transfers to borrowers and savers, {T̃b,t, T̃s,t}∞
t=0,

and the sales tax rate τ to satisfy the flow budget constraint

Ḋg,t = itDg,t + Pt
(
ωT̃b,t + (1−ω)T̃s,t

)
− τ

∫ 1

0
Pt(j)Yt(j)dj

and the No-Ponzi condition limt→ e−
∫ t

0 isdsDg,t ≤ 0.
Combining the conditions above, we obtain the intertemporal budget constraint of the

government

Dg,0 =
∫ ∞

0
e−
∫ t

0 isdsPt
[
τYt −

(
ωT̃b,t + (1−ω)T̃s,t

)]
dt
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Market clearing conditions. The market clearing conditions for goods, labor, and bonds
are given by

ωCb,t + (1−ω)Cs,t = Yt

ωNb,t + (1−ω)Ns,t = Nt

ωBb,t + (1−ω)Bs,t = Dg,t

where Nt =
∫ 1

0 Nt(j)dj denotes the aggregate labor demand in period t.

Steady state

In steady state, we have that µj,t = σ−1(ρj− r), where r is the steady-state real interest rate.
Therefore, r = ρs and µb,t > 0 for all t, so borrowers are against the borrowing constraint.
To ease notation, we write ρs = ρ.

Consumption of borrowers is given by

Cb =
W
P

Nb + T̃b − ρDp

Consumption of savers is given by

Cs =
W
P

Ns +
(1− τ)Y− W

P N
1−ω

+ T̃s + ρBs

Note that by combining the two conditions above and market clearing, we obtain the
government’s budget constraint

τY−ωT̃b − (1−ω)T̃s = ρDg

where Dg ≥ 0 is the amount of government debt in steady state.
From the optimal pricing condition, we obtain

P =
ε

ε− 1
W

1− τ

The distribution of consumption in steady state will depend on fiscal policy. Fix a
steady state with a given value for (Cb, Cs) and government debt Dg. The required value
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of transfers that implement the given level of consumption are

T̃b = Cb −
(

W
P

) 1+φ
φ

C
− σ

φ

b + ρDp

T̃s = Cs −
(

W
P

) 1+φ
φ

C
− σ

φ
s − 1

ε

1− τ

1−ω
Y− ρ

Dg + ωDp

1−ω

where Y = ωCb + (1− ω)Cs, W
P = (1− τ)(1− ε−1), and we used the labor supply condi-

tions to eliminate Nb and Ns.

Equilibrium dynamics

Exponentially decaying interest rates. Suppose it− ρ = e−θt(i0− ρ). Then, νt is given by

νt = σ̂−1(it − ρ).

where σ̂−1 ≡ (1−ω)σ−1+ωχrθ
1−ωχc

.
The consumption path evaluated at C = 0, c∗t , is given by

c∗t = − (ω− ρ)− (ω− ρ)e−(ω−ω)t

ω−ω
σ̂−1 it − ρ

ω + θ
+

ρ−ω

ω−ω

(
1− e−(ω+θ)t

ω + θ
− 1− e−(ω+θ)t

ω + θ

)
eωtσ̂−1(i0 − ρ)

= σ̂−1 (ρ−ω)eωt − (ρ + θ)e−θt

(ω + θ)(ω + θ)
(i0 − ρ).

The inflation path evaluated at C = 0, π∗t , is given by

π∗t =
κ

ω−ω

(
1− e−(ω−ω)t

) σ̂−1

ω + θ
(it − ρ) +

κ

ω−ω

(
1− e−(ω+θ)t

ω + θ
− 1− e−(ω+θ)t

ω + θ

)
eωtσ̂−1(i0 − ρ)

= κσ̂−1 eωt − e−θt

(ω + θ)(ω + θ)
(i0 − ρ).

The real rate is given by

it − π∗t − ρ =

(
1 +

κσ̂−1

(ω + θ)(ω + θ)

)
e−θt(i0 − ρ)− κσ̂−1

(ω + θ)(ω + θ)
eωt(i0 − ρ),

and the average real rate is given by

ρ
∫ ∞

0
e−ρt(it − π∗t − ρ)dt =

(
1 +

κσ̂−1

(ω + θ)(ω + θ)

)
ρ

ρ + θ
(i0 − ρ)− κσ̂−1

(ω + θ)(ω + θ)

ρ

ρ−ω
(i0 − ρ),
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The purely forward-looking solution to the dynamic system satisfies C =
∫ ∞

0 Ωzdz,
where

Ωz = −
ρ

ω−ω

(
e−ωz − e−ωz

)
Hence, C can be written as

C = − ρσ̂−1

(ω + θ)(ω + θ)
(i0 − ρ)
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D Derivation of the Quantitative Model: RANK

Goods production

Output is produced by a representative, competitive firm using the following technology

Yt =

(∫ 1

0
Y

1
λ f

i,t di

)λ f

, λ f > 1,

where λ f governs the degree of substitution between the different inputs. Profit maximiza-
tion leads to the following FOC

Yi,t =

(
Pi,t

Pt

)− λ f
λ f−1

Yt.

Thus, the aggregate price level is

Pt =

(∫ 1

0
P

1
1−λ f

i,t di

)1−λ f

.

The production function of intermediate goods is given by

Yi,t =

(ztHi,t)
1−αKα

i,t − z+t ϕ if (ztHi,t)
1−αKα

i,t ≥ z+t ϕ

0 otherwise.

Here, zt is a technology shock and ϕ denotes a fixed production cost. The object z+t is
defined as follows:

z+t = Ψ
α

1−α
t zt.

Along a nonstochastic steady-state growth path, Yt/z+t and Yi,t/z+t converge to a constant.
We assume that

zt

zt−1
= µz

Ψt

Ψt−1
= µψ

hence
z+t

z+t−1
= µ

α
1−α
Ψ µz.
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As is common in the literature, we assume that there is no entry or exit of intermediate
good producers, and that firms make zero profits in steady state. This requires that the
fixed cost grow at the same rate as the growth rate of output; this is why ϕ is multiplied by
z+t in the intermediaries’ production function.

The production of intermediate goods uses capital services, Ki,t, and homogeneous
labor services, Hi,t. Firms must borrow to pay the wage bill, so that the cost of labor is
given by

WtRt,

where Wt denotes the aggregate nominal wage rate and Rt denotes the gross nominal in-
terest rate on working capital loans. In an interior solution, the optimal choice of capital
and labor satisfies

rk
t

WtRt
Pt

=
α

1− α

Hi,t

Ki,t

and the firms’ real marginal cost is given by

st =
1

z1−α
t

(
rk

t
α

)α (
WtRt

(1− α)Pt

)1−α

.

Apart from the fixed costs, the firms’ time t real profits are[
(1− τt)

Pi,t

Pt
− st

]
Yi,t

where τt is a proportional sales tax.
We adopt the Calvo model of price frictions. With probability ξp the intermediate good

firm cannot reoptimize its price, in which case it is assumed to set its price according to the
following rule

Pi,t = πt−1Pi,t−1.

With probability 1− ξp the intermediate good firm can reoptimize its price.
Let P̃t denote the value of Pi,t set by a firm that can reoptimize at time t. Note that P̃t

does not depend on i since all firms that can reoptimize their price at time t choose the
same price. The firm chooses P̃t to maximize

Et−1

∞

∑
j=0

(βξp)
jvt+jPt+j

[
(1− τt+j)

Xp
j,tP̃t

Pt+j
− st+j

]
Yi,t+j,
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where

Xp
j,t =

πt × πt+1 × · · · × πt+j−1 for j ≥ 1

1 for j = 0,

and βjvt+j is the household’s valuation in period t of one unit of the final good delivered in
period t + j. The first-order necessary condition associated with this optimization problem
is given by

Et−1

∞

∑
j=0

(βξp)
jvt+jPt+jYt+j

[
(1− τt+j)

Xp
j,tP̃t

Pt+j
− λ f st+j

]
= 0

The goods market clearing condition for this economy is given by

Yt = Ct + Ĩt + Gt,

where Ct denotes household consumption, Gt denotes exogenous government consump-
tion, and Ĩt is a homogeneous investment good that is defined as follows:

Ĩt =
1

Ψt
(It + a(ut)Kt).

The investment goods, It, are used by households to add to the physical stock of capital,
Kt. The remaining investment goods are used to cover maintenance costs, a(ut)Kt, arising
from capital utilization, ut. The cost function a(·) is increasing and convex, and has the
property that in steady state, ut = 1 and a(1) = 0. Finally, Ψt is the productivity of the
production of the homogeneous investment good Ĩt.

The relationship between the utilization of capital, ut, capital services, Kt, and the phys-
ical stock of capital, Kt, is as follows

Kt = utKt.

The investment and capital utilization are discussed in the households’ problem below.

Households

Households supply the factors of production, labor, and capital. The model incorporates
Calvo-style wage setting frictions. We assume that there are many different specialized
labor inputs, hj,t, for j ∈ (0, 1). There is a single monopolist that sets the wage for each type,
j, of labor service. However, the monopolist’s market power is limited by the presence of
other labor services, j′ 6= j, that are substitutable for hj,t. We assume that labor is indivisible:
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people work either full time or not at all. That is, hj,t represents a quantity of people and
not, say, the number of hours worked by a representative worker.

Households and the labor market

The labor hired by firms is interpreted as a homogeneous factor of production, Ht, supplied
by “labor contractors.” Labor contractors produce Ht by combining a range of differenti-
ated labor inputs, hj,t, using the following linear homogeneous technology:

Ht =

[∫ 1

0
(hj,t)

1
λw dj

]λw

, λw > 1.

Labor contractors are perfectly competitive and take the wage rate of Ht, Wt, as given. They
also take the wage rate of the jth labor type, Wj,t, as given. Contractors choose inputs and
outputs to maximize profits

WtHt −
∫ 1

0
Wj,thj,tdj.

The first-order necessary condition for optimization is given by

hj,t =

(
Wt

Wj,t

) λw
λw−1

Ht. (33)

Substituting the latter back into the labor aggregator function and rearranging, we obtain

Wt =

(∫ 1

0
W

1
1−λw
j,t dj

)1−λw

.

Differentiated labor is supplied by a large number of identical households. The rep-
resentative household has many members corresponding to each type, j, of labor. Each
worker of type j has an index, l, distributed uniformly over the unit interval, [0, 1], which
indicates that worker’s disutility to work. A type j worker with index l experiences utility

log(ce
t − bCt−1)− ALlφ, φ > 0,

if employed, and
log(cne

t − bCt−1),

if not employed. When b > 0, the worker’s marginal utility of current consumption is
an increasing function of the household’s consumption in the previous period. Given the
additive separability of consumption and employment in utility, the efficient allocation of
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consumption across workers within the household implies

ce
t = cne

t = Ct.

We assume that the household sends j-type workers with 0 ≤ l ≤ hj,t to work and keeps
those l > hj,t out of the labor force. The equally weighted integral of utility over all l ∈ [0, 1]
workers is

log(Ct − bCt−1)− AL
h1+φ

j,t

1 + φ
.

Aggregate household utility also integrates over the unit measure of j-type workers

log(Ct − bCt−1)− AL

∫ 1

0

h1+φ
j,t

1 + φ
dj. (34)

The wage rate of the jth type of labor, Wj,t, is determined outside the representative
household by a monopoly union that represents all j-type workers across all households.
The union’s problem is discussed below.

Wages, employment, and monopoly unions

In each period, the monopoly union must satisfy its demand curve, (33), and it faces Calvo
frictions in the setting of Wj,t. With probability 1− ξw the union can optimize the wage,
and with the complementary probability, ξw, it cannot. In the latter case, we suppose that
the nominal wage rate is set as follows:

Wj,t+1 = π̃w,tWj,t

π̃w,t = πtµz+ .

With this specification, the wage of each type j labor is the same in the steady state. Because
the union problem has no state variable, all unions with the opportunity to reoptimize in
the current period choose the same wage. In particular, a union that can reoptimize chooses
the current value of the wage, W̃t, to maximize

Et−1

∞

∑
j=0

(βξw)
j

[
vt+jXw

j,tW̃
t
t ht

i,t+j − AL
(ht

i,t+j)
1+φ

1 + φ

]
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where

Xw
j,t =

π̃w,t × π̃w,t+1 × · · · × π̃w,t+j−1 for j ≥ 1

1 for j = 0.

Here, ht
t+j denotes the quantity of workers employed in period t + j of a union that has an

opportunity to reoptimize the wage in period t and does not reoptimize again in periods t+
1, . . . , t+ j. Also, vt+j denotes the marginal value assigned by the representative household
to the wage. The union treats vt as an exogenous variable. The first order condition of the
union’s problem is

Et−1

∞

∑
j=0

(βξw)
j
[

vt+j(Xw
j,t)
− 1

λw−1 W
λw

λw−1
t+j

(
W̃t

t
)− 1

λw−1 Ht+j−

λw AL(Xw
j,t)
− (1+φ)λw

λw−1 W
(1+φ)λw

λw−1
t+j

(
W̃t

t
)− (1+φ)λw

λw−1 H1+φ
t+j

]
= 0

Capital accumulation

The household owns the economy’s physical stock of capital, sets the utilization rate of
capital, and rents out the services of capital in a competitive market. The household accu-
mulates capital using the following technology:

Kt+1 = (1− δ)Kt + F (It, It−1) , (35)

where δ ∈ [0, 1] and

F (It, It−1) =

(
1− S

(
It

It−1

))
It.

We assume that S (µz+µΨ) = S′ (µz+µΨ) = 0, where µz+µΨ is the growth rate of invest-
ment in steady state. Also, we assume that S′′(·) > 0. Because of the nature of the above
adjustment cost function, the curvature parameters have no impact on the model’s steady
state.

For each unit of Kt+1 owned in period t, the household receives Xk
t+1 in net nominal

payments in period t + 1

Xk
t+1 = ut+1Pt+1rk

t+1 −
Pt+1

Ψt+1
a (ut+1) . (36)

The first term is the gross nominal period t + 1 rental income from a unit of Kt+1. The
second term represents the cost of capital utilization, a (ut+1) Pt+1/Ψt+1. Here, Pt+1/Ψt+1

is the nominal price of the investment goods absorbed by capital utilization.
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Household optimization problem

The household’s period t budget constraint is as follows:

Pt

(
Ct +

1
Ψt

It

)
+ Bt ≤

∫ 1

0
Wt,jht,jdj︸ ︷︷ ︸
=Wt Ht

+Xk
t Kt + Rt−1Bt−1 + PtDt + PtTt (37)

where Wt,j represents the wage earned by workers type-j; Bt denotes the quantity of one-
period risk-free bonds purchased in period t, and Rt−1 denotes the gross nominal inter-
est rate on bonds purchased in period t − 1, which pay off in period t; Dt are the firms’
profits; and Tt are government lump-sum transfers. The household’s problem is to select
sequences,

{
Ct, It, Bt+1, Kt+1

}
, to maximize (34) subject to the wage process selected by the

monopoly unions, (35), (36), and (37).
The first-order necessary and sufficient conditions are

(Ct) : Et−1

[
1

Ct − bCt−1
− βb

1
Ct+1 − bCt

]
= vtPt

(ut) : Et−1rk
t =

1
Ψt

a′(ut)

(Kt+1) : Et−1Ptvt = βEt−1Pt+1vt+1

ut+1rk
t+1 −

a(ut+1)
Ψt+1

+ (1− δ)µt+1

µt


(It) : Et−1Pt

vt

Ψt
= Et−1 [PtvtµtF1,t + βPt+1vt+1µt+1F2,t+1]

(Bt+1) : Et−1vt = Et−1βvt+1Rt

where βtvt is the Lagrange multiplier associated with the budget constraint and βtµtvt is
the Lagrange multiplier associated with the law of motion of capital.

Fiscal and monetary authorities

We suppose that monetary policy follows a Taylor rule of the following form:

log
(

Rt

R

)
= ρR log

(
Rt−1

R

)
+ (1− ρR)

[
rπ log

(πt

π

)
+ ry log

(
Yt

z+t Y

)
+

r∆y log
(

Yt

µz+Yt−1

)]
+ εR,t
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where εR,t denotes a monetary policy shock, which follows

log εR,t = ρM log εR,t−1 + ut.

The per-period budget constraint of the government is given by

Bt = Rt−1Bt−1 − τtPtYt + PtTt + PtGt.

We adopt the model of government consumption suggested in Christiano and Eichenbaum
(1992 a):

Gt = gz+t .

Equilibrium and Steady State

An equilibrium is a stochastic process for the prices and quantities with the property that
the household and firm problems are satisfied, and goods and labor markets clear. The
equilibrium of this economy can be characterized by the following system of equations:

Yi,t = (ztHi,t)
1−α(utKt)

α − z+t ϕ

rk
t

WtRt
Pt

=
α

1− α

Hi,t

Ki,t

st =
1

z1−α
t

(
rk

t
α

)α (
WtRt

Pt(1− α)

)1−α

Et−1

∞

∑
j=0

(βξp)
jvt+jPt+jYt+j

[
(1− τt+j)

Xp
j,tP̃t

Pt+j
− λ f st+j

]
= 0

Pt =

[
(1− ξp)P̃

1
1−λ f

t + ξp(πt−1Pt−1)
1

1−λ f

]1−λ f

Yt =

(∫ 1

0
Y

1
λ f

i,t di

)λ f

Yt = Ct +
1

Ψt
(It + a(ut)Kt) + Gt
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Et−1

∞

∑
j=0

(βξw)
j
[

vt+j(Xw
j,t)
− 1

λw−1 W
λw

λw−1
t+j

(
W̃t

t
)− 1

λw−1 Ht+j−

λw AL(Xw
j,t)
− (1+φ)λw

λw−1 W
(1+φ)λw

λw−1
t+j

(
W̃t

t
)− (1+φ)λw

λw−1 H1+φ
t+j

]
= 0

Wt =

[
(1− ξw)W̃

1
1−λw
t + ξw(πt−1µz+Wt−1)

1
1−λw

]1−λw

Kt+1 = (1− δ)Kt +

[
1− S

(
It

It−1

)]
It

Pt

(
Ct +

1
Ψt

It

)
+ Bt ≤WtHt + Xk

t Kt + Rt−1Bt−1 + PtDt + PtTt

1
Ct − bCt−1

− βbEt−1

[
1

Ct+1 − bCt

]
= vtPt

rk
t =

1
Ψt

a′(ut)

Ptvt = βEt−1Pt+1vt+1

ut+1rk
t+1 −

a(ut+1)
Ψt+1

+ (1− δ)µt+1

µt


Pt

vt

Ψt
= Et−1

[
Ptvtµt

[
1− S

(
It

It−1

)
− S′

(
It

It−1

)
It

It−1

]
+ βPt+1vt+1µt+1S′

(
It+1

It

)(
It+1

It

)2
]

vt = Et−1βvt+1Rt

log
(

Rt

R

)
= ρR log

(
Rt−1

R

)
+ (1− ρR)

[
rπ log

(πt

π

)
+ ry log

(
Yt

z+t Y

)
+

r∆y log
(

Yt

µz+Yt−1

)]
+ εR,t

log εR,t = ρM log εR,t−1 + ut

Bt = Rt−1Bt−1 − τtPtYt + PtTt + PtGt

Since the economy exhibits exogenous growth through zt and Ψt, it is useful to rescale
the variables in such a way that there exists a steady-state equilibrium in the rescaled vari-
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ables. Let

yi,t =
Yi,t

z+t
, yt =

Yt

z+t
, ct =

Ct

z+t
, it =

It

z+t Ψt
, kt+1 =

Kt+1

z+t Ψt
, bt =

Bt

z+t Pt
, Tt =

Tt

z+t

πt =
Pt

Pt−1
, p̃t =

P̃t

Pt
, w̃t =

W̃t
t

Wt
, wt =

Wt

z+t Pt
, rk

t = Ψtrk
t , ψt = Ptvtz+t , µ̃t = Ψtµt

Thus, we can rewrite the system characterizing equilibrium as

yi,t =
µz

µz+
H1−α

i,t (utkt)
α − ϕ (38)

rk
t

wtRt
= µΨµz+

α

1− α

Hi,t

Ki,t
(39)

st =

(
rk

t
α

)α (
wtRt

1− α

)1−α

(40)

Et−1

∞

∑
j=0

(βξp)
jψt+jyt+j

[
(1− τt+j)

πt

πt+j
p̃t − λ f st+j

]
= 0 (41)

1 = (1− ξp) p̃
1

1−λ f
t + ξp

(
πt−1

πt

) 1
1−λ f

(42)

yt =

(∫ 1

0
y

1
λ f
i,t di

)λ f

(43)

yt = ct + it + a(ut)
kt

µz+µΨ
+ g (44)

Et−1

∞

∑
j=0

(βξw)
j

ψt+j

(
∏

j−1
s=0 πκw

t+sπ
1−κw

∏
j
s=1 πt+s

)− 1
λw−1

w
λw

λw−1
t+j

(
wtw̃t

t
)− 1

λw−1 Ht+j−

λw AL

(
∏

j−1
s=0 πκw

t+sπ
1−κw

∏
j
s=1 πt+s

)− (1+φ)λw
λw−1

w
(1+φ)λw

λw−1
t+j

(
wtw̃t

t
)− (1+φ)λw

λw−1 H1+φ
t+j

 = 0 (45)
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1 = (1− ξw)w
1

1−λw
t + ξw

(
πt−1

πt

wt−1

wt

) 1
1−λw

(46)

kt+1 =
1− δ

µz+µΨ
kt +

[
1− S

(
µz+µΨ

it

it−1

)]
it (47)

ct + it + bt = (1− τ)yt +
Rt−1

πtµ
+
z

bt−1 + Tt (48)

1
ct − b ct−1

µz+

− βbEt−1

[
1

µz+ct+1 − bct

]
= ψt (49)

rk
t = a′(ut) (50)

µz+µΨψt = βEt−1ψt+1

[
ut+1rk

t+1 − a(ut+1) + (1− δ)µ̃t+1

µ̃t

]
(51)

ψt

µz+µΨ
= Et−1

[
ψtµ̃t

[
1− S

(
µz+µΨ

it

it−1

)
− S′

(
µz+µΨ

it

it−1

)
it

it−1

]
+

βψt+1µ̃t+1S′
(

µz+µΨ
it+1

it

)(
it+1

it

)2
]

(52)

ψt = Et−1βψt+1
Rt

µ+
z πt+1

(53)

log
(

Rt

R

)
= ρR log

(
Rt−1

R

)
+ (1− ρR)

[
rπ log

(πt

π

)
+ ry log

(yt

Y

)
+

r∆y log
(

yt

yt−1

)]
+ εR,t (54)

εR,t = ρMεR,t−1 + ut (55)

bt =
Rt−1

πtµz+
bt−1 − τtyt + Tt + g (56)
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Finally, a steady state in the transformed variables is a solution to

y =
µz

µz+
H1−αk

α − ϕ

rk

wR
= µΨµz+

α

1− α

H
K

s =

(
rk

α

)α (
wR

1− α

)1−α

(1− τ)− λ f s = 0

y = c + i + g

w =
λw ALHφ

ψ

i =
[

1− 1− δ

µz+µΨ

]
k

c + i + b = (1− τ) +
1
β

b + T

ψ =
µz+ − βb

c(µz+ − b)

rk = a′(1)

µz+µΨ = β

[
rk + (1− δ)µ̃

µ̃

]

µ̃ =
1

µz+µΨ
βR

µz+π
= 1

b =
R

πµz+
b− τy + T + g
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Linearization

To solve the model numerically, we linearize the system (38)-(56) around a non-stochastic
steady state in which the inflation rate is π. We define the following variables:

ŷt = log
yt

y
, ŷi,t = log

yi,t

y
, ĥt = log

ht

h
, ĥi,t = log

hi,t

h
, k̂t = log

kt

k
, k̂i,t = log

ki,t

k

ût = log ut, r̂k
t = log

rk
t

rk , ŵt = log
wt

w
, ŝt = log

st

s
, ˆ̃pt = log p̃t, π̂t = log

πt

π

τ̂ = τt − τ, ĉt = log
ct

c
, ît = log

it

i
, ˆ̃wt = log w̃t, ψ̂t = log

ψt

ψ
, ˆ̃µt = log

µ̃t

µ̃
,

R̂t = log
Rt

R
, b̂t = log

bt

b
, T̂t =

Tt − T
y

.

Firms Block. Linearizing (38) around the non-stochastic steady state, we get

ŷt =
y + φ

y

[
(1− α)ĥt + α(ût + k̂t)

]
. (57)

where we used that
∫ 1

0 ŷi,t = ŷt,
∫ 1

0 ĥi,t = ĥt and
∫ 1

0 k̂i,t = k̂t. Linearizing (39), we get

r̂k
t − ŵt − R̂t = ĥt − k̂t

Combining this equation with (57), we get

ŵt + R̂t +
1

1− α

y
y + ϕ

ŷt − r̂k
t −

α

1− α
ût −

1
1− α

k̂t = 0. (58)

Linearizing (40), we get

ŝt = αr̂k
t + (1− α)

(
ŵt + R̂t

)
(59)

Linearizing (41) around the non-stochastic steady state, we get

ˆ̃pt

1− βξp
= Et−1

[
ŝt +

τ̂t

1− τ
+

βξp

1− βξp
( ˆ̃pt+1 − π̂t + π̂t+1)

]
, (60)

where, τ̂t = τt − τ, and the other hat variable indicates the percent deviation from its
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steady-state value. Linearizing (42) and rearranging, we obtain

ˆ̃pt =
ξp

1− ξp
(π̂t − π̂t−1). (61)

Putting together (60) and (61), we get

π̂t =
1

1 + β
π̂t−1 +

β

1 + β
Et−1π̂t+1 +

γ

1 + β
Et−1

[
ŝt +

τ̂t

1− τ

]
(62)

where γ ≡ (1−βξp)(1−ξp)
ξp

.
Linearizing the resource constraint (44), we get

yŷt = cĉt +

[
1− 1− δ

µz+µΨ

]
kît +

rkk
µz+µΨ

ût (63)

Households Block. Linearizing (45), we get

(1 + φ)λw − 1
(λw − 1)(1− βξw)

ˆ̃wt = −ψ̂t − ŵt + φĥt+

βξw
(1 + φ)λw − 1

(λw − 1)(1− βξw)
Et−1

[
ŵt+1 − ŵt − π̂t + π̂t+1 + ˆ̃wt+1

]
(64)

Linearizing (46), we get

ˆ̃wt =
ξw

1− ξw
(π̂t − π̂t−1 + ŵt − ŵt−1). (65)

Putting together (64) and (65), we get

Et−1
[
βbwŵt+1 + βbwπ̂t+1 − (1 + (1 + β)bw) ŵt − (1 + β)bwπ̂t+

φĥt − ψ̂t + bwŵt−1 + bwπ̂t−1

]
= 0, (66)

where bw ≡ ξw
1−ξw

(1+φ)λw−1
(λw−1)(1−βξw)

.
Linearizing the law of motion of capital (47), we get

k̂t+1 =
1− δ

µz+µΨ
k̂t +

[
1− 1− δ

µz+µΨ

]
ît (67)
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Linearizing (48), we get

c
y

ĉt +
i
y

ît +
b
y

b̂t = (1− τ)ŷt +
b

βy

(
R̂t−1 − π̂t + b̂t−1

)
+ T̂t (68)

Linearizing (49), we get

µz+

(µz+ − b)(µz+ − βb)
(µz+ ĉt − bĉt−1)−

βb
(µz+ − b)(µz+ − βb)

Et−1(µz+ ĉt+1 − bĉt) + ψ̂t = 0

(69)
Linearizing (50), we get

r̂k
t = rkût (70)

Linearizing (51), we get

ψ̂t = βEt−1

ψ̂t+1 − ˆ̃µt +
rkr̂k

t+1 +
1−δ

µz+µΨ
ˆ̃µt+1

rk + 1−δ
µz+µΨ

 (71)

Linearizing (52), we get

0 = Et−1
[

ˆ̃µt − κµz+µΨ(ît − ît−1) + βκµz+µΨ(ît+1 − ît)
]

(72)

where κ ≡ S′′(µz+µΨ). Linearizing (53), we get

ψ̂t = Et−1ψ̂t+1 + R̂t − π̂t+1 (73)

Government Block. Finally, linearizing the Taylor rule, (54), we get

R̂t = ρRR̂t−1 + (1− ρR)
[
rππ̂t + ryŷt + r∆y(ŷt − ŷt−1)

]
+ εR,t (74)

with
εR,t = ρMεR,t−1 + ut

and the government’s budget constraint

b
y

b̂t =
b

βy
(R̂t−1 − π̂t + b̂t−1)− τt − τŷt + T̂t. (75)
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Timing and Information Set

As in CEE and ACEL, we assume that the period t realization of εR,t is not included in the
period t information set of the agents in our model. This ensures that our model satisfies
the restrictions used in the VAR analysis to identify a monetary policy shock.

To take it to Dynare, we need to redefine variables in such a way that variables in period
t are measurable with respect to information in period t rather than period t− 1. To that
end, we define the following variables:

c̃t = Et−1ĉt, w̃t = Et−1ŵt, ũt = Et−1ût, ĩt = Et−1 ît, π̃t = Et−1π̂t, ˜̃µt = Et−1 ˆ̃µt

(76)

The system of equations we take to Dynare is the following:

ŷt =
y + φ

y

[
(1− α)ĥt + α(ũt + k̂t)

]
(77)

w̃t +
1

1− α

y
y + ϕ

ŷt − r̂k
t −

α

1− α
ũt −

1
1− α

k̂t = 0 (78)

ŝt = αr̂k
t + (1− α)w̃t (79)

π̂t =
1

1 + β
π̃t−1 +

β

1 + β
Et−1π̂t+1 +

γ

1 + β
Et−1

[
ŝt +

τ̂t

1− τ

]
(80)

yŷt = cc̃t +

[
1− 1− δ

µz+µΨ

]
kĩt +

rkk
µz+µΨ

ũt (81)

βξwbwŵt+1 + βξwbwπ̂t+1 − (λw − 1 + (1 + β)ξwbw) ŵt − (1 + β)ξwbwπ̃t+

φĥt − ψ̂t + ξwbww̃t−1 + ξwbwπ̃t−1 = 0, (82)

k̂t+1 =
1− δ

µz+µΨ
k̂t +

[
1− 1− δ

µz+µΨ

]
ĩt (83)

µz+

(µz+ − b)(µz+ − βb)
(µz+ ĉt − bc̃t−1)

− βb
(µz+ − b)(µz+ − βb)

Et−1(µz+ ĉt+1 − bĉt) + ψ̂t = 0 (84)
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r̂k
t = rkût (85)

ψ̂t = βEt−1

ψ̂t+1 − ˆ̃µt +
rkr̂k

t+1 +
1−δ

µz+µΨ
ˆ̃µt+1

rk + 1−δ
µz+µΨ

 (86)

0 = ˜̃µt − κµz+µΨ(ît − ĩt−1) + βκµz+µΨ(ît+1 − ît) (87)

ψ̂t = Et−1ψ̂t+1 + R̂t − π̂t+1 (88)

R̂t = ρRR̂t−1 + (1− ρR)
[
rππ̂t + ryŷt + r∆y(ŷt − ŷt−1)

]
(89)

byb̂t =
Rby

πµz+
(R̂t−1 − π̂t + b̂t−1)− τt − τŷt + T̂t (90)

Equations (45), (47), (49) and (52) are backward-looking equations that are not used to de-
termine the values of variables in t = 0, since π̂0 = ˆ̃w0 = ĉ0 = î0. These equations are used
in t ≥ 1, once the shock is already part of the information set of agents (and there are no
other shocks in the future). Hence, variables dated in t and t + 1 do not need an informa-
tion set adjustment. However, variables dated in t − 1 do: in t = 1, past variables differ
depending on whether the information set of t = 0 was used or not; for t > 1, since there
are no more shocks, the two sets of variables coincide, so using the previous information
set is inconsequential. Once this is sorted out, can can see that all other variables are static
or forward-looking, so all these equations are used in t = 0 and onward, and some of these
variables need information adjustment (like ût in equation (42)), while others inherit that
property because of equilibrium conditions (like ŷt in equation (46)).

Data sources

We used the following data:
Nominal GDP: BEA Table 1.1.5 Line 1
Real GDP: BEA Table 1.1.3 Line 1
Consumption Durable: BEA Table 1.1.3 Line 4
Consumption Non Durable: BEA Table 1.1.3 Line 5
Consumption Services: BEA Table 1.1.3 Line 6
Private Investment: BEA Table 1.1.3 Line 7
GDP Deflator: BEA Table 1.1.9 Line 1
Capacity Utilization: FRED CUMFNS
Hours Worked: FRED HOANBS
Nominal Hourly Compensation: FRED COMPNFB
Civilian Labor Force: FRED CNP16OV
Nominal Revenues: BEA Table 3.1 Line 1
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Nominal Expenditures: BEA Table 3.1 Line 21
Nominal Transfers: BEA Table 3.1 Line 22
Nominal Gov’t Investment: BEA Table 3.1 Line 39
Nominal Consumption of Net Capital: BEA Table 3.1 Line 42
Effective Federal Funds Rate (FF): FRED FEDFUNDS
Market Value of Government Debt: Hall et al. (2018)

Parameters value

We divide the parameter set into two groups. For the parameters in the first group, we
calibrate them following Christiano et al. (2010). For those in the second group, we estimate
them using IRF matching methods.

The next table shows the values of the parameters we calibrate.

Parameter Value Description
α 0.36 Capital share
ξw 0.66 Wage stickiness
δ 0.025 Quarterly depreciation rate
β 0.9926 Quarterly discount factor
λw 1.05 Wage markup
µz 1.0041 Quarterly gross neutral technology growth
µΨ 1.0018 Quarterly gross investment technology growth
π 1.0083 Steady-state quarterly gross inflation rate
τ 0.27 Steady-state sales tax
gy 0.2 Steady-state government consumption to GDP ratio
by 0.75 Steady-state government debt to GDP ratio

The next table shows the values of the estimated parameters.
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Parameter Value Description
ξp 0.8364 Price stickiness
λ f 1.01 Price markup
σa 0.2776 Capacity adjustment costs curvature
κ 13.6947 Investment adjustment cost curvature
b 0.8067 Consumption habit
φ 0.2919 Inverse of Frisch elasticity
ρR 0.8342 Taylor rule: Interest smoothing
rπ 1.2315 Taylor rule: Inflation coefficient
ry 0.1230 Taylor rule: GDP coefficient
r∆y 0.9503 Taylor rule: GDP growth coefficient
ρM 0.0685 Autocorrelation monetary shock

D.1 Model reestimation

FIGURE 8: Model impulse response functions to a monetary shock. Parameters re-
estimated using fiscal data. Gray area represents 95% confidence intervals.
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E Quantitative TANK model

The system of equations characterizing the log-linear approximation of the equilibrium of
the economy is isomorphic to the one in RANK, except for three differences:

1. aggregate consumption is the sum of the consumption of borrowers and savers

ĉt = χĉs
t + (1− χ)ĉb

t

where we have imposed that steady-state transfers are such that cb = cs = c;

2. the unions’ objective is to maximize a weighted average of the utility of borrowers
and savers. Borrowers and savers need to supply the same amount of labor, and the
marginal value of the wage used by unions in their optimization problem is

ψ̂t = χψ̂s
t + (1− χ)ψ̂b

t .

3. both types of households face the same Euler equation, given by equation (69), but
while the optimality condition of bonds for savers is given by (73), the borrowers’
condition is given by

ψ̂b
t = Et−1

[
ψ̂b

t+1 + R̂b
t − π̂t+1 + ηd̂t

]
where η ≡ φ11(1, 1) + φ12(1, 1), the interest rate of the borrowers satisfies

R̂b
t = R̂t + ϕd̂t

where ϕ ≡ φ2(1, 1), and their budget constraint is

c
y

ĉb
t =

wh
y
(ŵt + ĥt) +

dy

β

(
R̂b

t−1 − π̂t + dt−1

)
− dydt

where dy ≡ d
y and we have assumed that T̂b

t = 0.

To keep the timing consistent with our VAR identification, we make the same timing as-
sumptions as in the RANK version of the model.

The next table shows the values of the parameters we calibrate.
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Parameter Value Description
α 0.36 Capital share
ξw 0.66 Wage stickiness
δ 0.025 Quarterly depreciation rate
β 0.9926 Quarterly discount factor
λw 1.05 Wage markup
µz 1.0041 Quarterly gross neutral technology growth
µΨ 1.0018 Quarterly gross investment technology growth
π 1.0083 Steady-state quarterly gross inflation rate
τ 0.27 Steady-state sales tax
gy 0.2 Steady-state government consumption to GDP ratio
by 0.75 Steady-state government debt to annual GDP ratio
χ 5/6 Fraction of savers
dy 0.40 Steady-state household debt to annual GDP ratio

The next table shows the values of the estimated parameters.

Parameter Value Description
ξp 0.8629 Price stickiness
λ f 1.5 Price markup
σa 4.2837 Capacity adjustment costs curvature
κ 8.1487 Investment adjustment cost curvature
b 0.7774 Consumption habit
φ 0.1590 Inverse of Frisch elasticity
η 0 Borrowing rate curvature
ϕ 0.1509 Borrowing rate slope

Our estimation of λ f hits our imposed upper bound of 1.5. When we relaxed this
constraint, λ f would increase to implausible values, with a minor impact on the likelihood
value and the value of other parameters. Given that the likelihood function is relatively
flat in λ f , we decided to report the value for 1.5.
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