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1 Introduction

A long tradition in monetary economics emphasizes the role of the revaluation of real

and financial assets in shaping the economy’s response to changes in monetary policy.

Its importance can be traced back to both classical and Keynesian economists.1 Keynes

himself described the effects of interest rate changes as follows:

Perhaps the most important influence, operating through changes in the rate of interest, on the

readiness to spend out of a given income, depends on the effect of these changes on the appreciation

or depreciation in the price of securities and other assets.

- John M. Keynes, The General Theory of Employment, Interest, and Money (emphasis added).

These revaluation effects caused by monetary policy have been documented by an ex-

tensive empirical literature. Bernanke and Kuttner (2005) study the effects of monetary

shocks on stock prices. Gertler and Karadi (2015) and Hanson and Stein (2015) consider

the effects on bonds. A robust finding of this literature is that changes in asset prices are

explained mainly by fluctuations in future excess returns, related to changes in the risk

premia, rather than changes in the risk-free rate.2

The extent to which changes in asset prices play a relevant role in the transmission of

monetary policy to the real economy, however, has been controversial. One view high-

lights the importance of wealth effects. Cieslak and Vissing-Jorgensen (2020) show that

policymakers track the behavior of stock markets because of their impact on households’

consumption, while Chodorow-Reich, Nenov and Simsek (2021) study the importance of

this channel empirically. An alternative view defends that changes in asset valuations

have no real implications. Cochrane (2020) and Krugman (2021) argue that movements

in discount rates lead to changes in “paper wealth,” without an impact on consumption.

In this paper, we study how monetary policy affects the real economy through changes

1The revaluation of government liabilities was central to Pigou (1943) and Patinkin (1965), while Metzler
(1951) considered stocks and money. Tobin (1969) focused on the revaluation of real assets.

2For a recent review of this work, see Bauer and Swanson (2023).

1



in asset prices in a New Keynesian setting. We provide a new framework that generates

rich asset-pricing dynamics and heterogeneous portfolios while preserving the simplicity

of the textbook model. In particular, we propose a new solution technique that delivers

time-varying risk premium and precautionary savings motive without having to resort

to higher-order approximations.3 We derive necessary conditions for changes in risk pre-

mia to affect the real economy. Under special conditions, we obtain a risk-premium neu-

trality result, where changes in risk premia caused by monetary shocks affect asset prices,

but they have no effect on aggregate consumption and inflation. We identify the redis-

tribution generated by heterogeneous portfolios revaluations among agents with differ-

ent precautionary motives as the main channel through which risk premia affect the real

economy. Moreover, and despite being stylized, the model captures quantitatively cen-

tral aspects of the monetary transmission mechanism, including the term premium, the

equity premium, and corporate spreads, as well as the differential responses of borrowers

and savers to monetary shocks observed in the data. We then use the model to assess the

quantitative importance of the risk-premium channel and find that changes in risk premia

can account for a large fraction of the response of aggregate consumption and inflation to

changes in monetary policy in our model.

We consider an economy populated by workers and savers with two main ingredi-

ents: i) rare disasters, and ii) heterogeneous beliefs. Rare disasters enable us to capture

both a precautionary savings motive and realistic risk premia.4 Savers invest in stocks,

long-term government bonds, and short-term debt, and have heterogeneous beliefs, as

in Caballero and Simsek (2020).5 This has two consequences. First, they hold heteroge-

3As shown in e.g. Schmitt-Grohé and Uribe (2004), a standard perturbation around the non-stochastic
steady state can only generate time-varying risk premia with at least a third-order approximation.

4Rare disasters have been widely used to explain a range of asset-pricing “puzzles”; see Tsai and
Wachter (2015) for a review.

5For recent evidence from bond returns consistent with belief heterogeneity, see Bauer and Chernov
(2023). A large literature on asset pricing studies models with heterogeneous beliefs, see e.g. Detemple and
Murthy (1994), Basak (2005), and Atmaz and Basak (2018).
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neous portfolios in equilibrium. Second, they have heterogeneous marginal propensities

to consume (MPCs) out of changes in wealth due to different precautionary motives. This

generates time-variation in risk premia in response to monetary shocks.

Our first contribution is methodological and consists of an aggregation result. Given

investor heterogeneity, we must characterize not only the dynamics of aggregate con-

sumption and inflation, but also the behavior of portfolios, asset prices, and individual

consumption. This increases the dimensionality of the problem and typically makes de-

riving analytical results infeasible. We show that our economy satisfies an as if result: the

economy with heterogeneous savers behaves as an economy with a representative saver,

but the probability of disaster, as implied by market prices, is time-varying and responds

to monetary policy. This market-implied disaster probability is a key determinant of asset

prices, and it is the main channel through which investor heterogeneity affects the real

economy.

Our second contribution identifies conditions under which time-varying risk premia

plays a role in the monetary transmission mechanism. Consistent with the evidence, a

contractionary monetary shock leads to an increase in risk premia and a reduction in the

price of risky assets. One could then conclude that this reduction in households’ wealth

leads to a reduction in consumption. However, as the discount rate increases, the amount

of wealth required to finance the same amount of consumption also decreases. The net

effect of changes in risk premium is ambiguous and depends on whether households are

net buyers or net sellers of risky assets. As recently articulated by Cochrane (2020) and

Krugman (2021), a household who consumes the dividends from their financial assets can

still afford the same level of consumption after a change in discount rates.

Formally, we show that the aggregate wealth effect corresponds to the sum of all

households’ wealth net of the change in the cost of the original consumption bundle.

Interestingly, the aggregate wealth effect does not depend on the equity premium. Move-

ments in equity prices redistribute wealth among investors but do not generate gains or
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losses for the household sector as a whole. In a closed economy, the government is the

only counterpart to the household sector, so the aggregate wealth effect depends on the

revaluation of government bonds and the amount of trading in these bonds.

Risk also affects the households’ precautionary motive, given the redistribution among

savers after a monetary shock. Because optimists hold a larger fraction of their wealth in

risky assets, an increase in the interest rate disproportionately reduces their wealth. Hold-

ing the aggregate wealth effect constant, this redistribution of wealth is then reflected in

the market-implied probability of disaster, which increases after the monetary shock. This

is the “as-if” result in action: redistribution between optimists and pessimists is akin to

an increase in the objective probability of disaster risk in a representative-agent model.

We perform next a quantitative exploration of the importance of risk and heterogene-

ity for the transmission of monetary shocks to the real economy. While the model lacks

some important dimensions present in state-of-the-art quantitative HANK models (e.g.,

rich MPC heterogeneity), this exercise is useful to get a first evaluation of the economic

relevance of these channels. We find that the time-varying precautionary motive accounts

for roughly 60% of the response of aggregate consumption on impact, while the response

coming from the aggregate wealth effect accounts for roughly 30% of the overall con-

sumption response. The intertemporal-substitution effect accounts for less than 10% of

the response of aggregate consumption on impact. Heterogeneous beliefs are crucial for

this result. The response of consumption in the economy with heterogeneous beliefs is

more than three times larger than in the economy with homogeneous beliefs. Finally, we

introduce long-term defaultable household debt and find that it amplifies the response of

aggregate consumption. Hence, risk and heterogeneity play a large role in how monetary

policy affects the real economy.

Literature review. Wealth effects have a long tradition in monetary economics. Pigou

(1943) relied on a wealth effect to argue that full employment could be reached even in
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a liquidity trap. Kalecki (1944) argued that these effects apply only to government li-

abilities, as inside assets cancel out in the aggregate, while Tobin highlighted the role of

private assets and high-MPC borrowers. Recently, wealth effects have regained relevance.

Kaplan, Moll and Violante (2018) build a quantitative HANK model and find only a mi-

nor role for the standard intertemporal-substitution channel, leading the way to a more

important role for wealth effects. Much of the literature has focused on the role of hetero-

geneous marginal propensities to consume (MPCs) in settings with idiosyncratic income

risk. Instead, we focus on aggregate risk and heterogeneous portfolios.

Our work is closely related to two strands of literature. First, it is related to work

on the interaction between monetary policy and changes in asset prices, including mod-

els with sticky prices, such as Caballero and Simsek (2020), and models with financial

frictions, such as Brunnermeier and Sannikov (2016) and Drechsler, Savov and Schnabl

(2018).6 In a recent contribution, Kekre and Lenel (2022) consider the role of the marginal

propensity to take risk in determining the risk premium and shaping the response of

the economy to monetary policy. Kekre, Lenel and Mainardi (2023) consider the role of

market segmentation in the determination of the term premium. We contribute to this lit-

erature by presenting an analytical framework that features aggregate risk and generates

a sizable time-varying risk premium while preserving the tractability of standard New

Keynesian models. Also related is Campbell, Pflueger and Viceira (2020) and Pflueger

and Rinaldi (2022), which use a habit model to study the role of monetary policy in deter-

mining bond and equity premia. Their models generate an exact log-linear Euler equation

that is independent of risk, which implies that aggregate consumption and inflation are

also independent of risk, consistent with our risk-premium neutrality result. In contrast,

aggregate risk, through the precautionary motives they generate, are a crucial channel of

transmission in our model.

6 Our work is also related to the literature on unconventional monetary policy and asset prices, see e.g.
Silva (2020), Caballero and Simsek (2021), and Corhay, Kind, Kung and Morales (2023).
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The paper is also closely related to the analytical HANK literature, such as Werning

(2015) and Debortoli and Galí (2017). While this literature focuses primarily on how the

cyclicality of income interacts with differences in MPCs, we focus instead on how het-

erogeneous asset positions interact with differences in MPCs. As e.g. Eggertsson and

Krugman (2012), we consider the role of household debt, but they abstract from risk and

focus instead on the implications of deleveraging. Iacoviello (2005) considers a mone-

tary economy with private debt but focuses instead on housing as collateral. Our work is

also related to Auclert (2019), which studies the redistribution channel of monetary policy

arising from portfolio heterogeneity. Our paper emphasizes the redistribution channel in

the context of a general equilibrium setting with aggregate risk.

Finally, a literature studies rare disasters and business cycles. Gabaix (2011) and Gou-

rio (2012) consider a real business cycle model with rare disasters, while Andreasen (2012)

and Isoré and Szczerbowicz (2017) allow for sticky prices. They focus on changes in dis-

aster probability while we study monetary shocks in a heterogeneous-agent model.

2 D-HANK: A Rare Disasters Analytical HANK Model

In this section, we consider an analytical HANK model with two main ingredients: i) the

possibility of rare disasters, and ii) heterogeneous beliefs.

2.1 The Model

Environment. Time is continuous and denoted by t ∈ R+. The economy is populated

by households, firms, and a government. There is a continuum of households that can

be of three types: workers, optimistic savers, and pessimistic savers (denoted by w, o and p,

respectively), who differ in their discount rates and beliefs about the probability of the

economy being hit by an aggregate shock. We let µj ≥ 0 denote the mass of households
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of type j ∈ {w, o, p}, where µb + µo + µp = 1. Households can borrow or lend at a

riskless rate subject to a borrowing constraint, and they can save on long-term nominal

government bonds and corporate equity. In this section, we assume that the borrowing

limit is zero. We study the case of a positive borrowing limit and defaultable long-term

household debt in Section 5. Workers are the only ones who supply labor, and they are

relatively impatient, so their borrowing constraint is binding in equilibrium.

Firms can produce final or intermediate goods. Final-goods producers operate com-

petitively and combine intermediate goods using a CES aggregator with elasticity  > 1.

Intermediate-goods producers use labor as their only input and face quadratic (Rotem-

berg, 1982) pricing adjustment costs. Intermediate-goods producers are subject to an

aggregate productivity shock: with Poisson intensity λ ≥ 0, their productivity is per-

manently reduced. This shock captures the possibility of rare disasters: low-probability,

large drops in productivity and output, as in the work of Barro (2006, 2009). Periods that

predate the realization of the shock are in the no-disaster state, and periods that follow the

shock are in the disaster state. The disaster state is absorbing, and there are no further

shocks after the disaster is realized.7

The government sets fiscal policy, comprising of transfers to workers and savers, and

monetary policy, specified by an interest rate rule subject to monetary shocks.

Savers’ problem. Savers face a portfolio problem where they choose how much to in-

vest in short-term bonds, long-term bonds, and corporate equity.

A long-term bond issued in period t trades at a nominal market price QL,t in the no-

disaster state and promises to pay coupons e−ψL(s−t) at all dates s ≥ t. Because of the

structure of the coupon payments, the prices of the bonds issued at previous dates are

proportional to new issues, i.e. a bond issued in t − z trades at QL,te−ψLz in period t. The

7Assuming an absorbing disaster state simplifies the presentation, but it is not essential for our results.
Allowing for partial recovery, as in e.g. Barro, Nakamura, Steinsson and Ursúa (2013), introduces dynamics
in the disaster state, but it does not change the implications for the no-disaster state, which is our focus.
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rate of decay ψL is inversely related to the bond’s duration, where a consol corresponds

to ψL = 0 and the limit ψL → ∞ corresponds to the case of short-term bonds. We de-

note by Q∗
L,t the price of the bond in the disaster state, where the star superscript is used

throughout the paper to denote variables in the disaster state. Then, the nominal return

on the long-term bond is given by

dRL,t =


1

QL,t
+

Q̇L,t

QL,t
− ψL


dt +

Q∗
L,t − QL,t

QL,t
dNt,

where Nt is a Poisson process with arrival rate λ (under the objective measure).

The price of a claim on real aggregate corporate profits is denoted by QE,t and the real

return on equities evolves according to

dRE,t =


Πt

QE,t
+

Q̇E,t

QE,t


dt +

Q∗
E,t − QE,t

QE,t
dNt,

where Πt denotes real profits and Q∗
E,t is the equity price in the disaster state.

Savers have heterogeneous beliefs regarding the probability of a disaster. Subjective

beliefs about the arrival rate of the aggregate productivity shock are given by λj, for j ∈

{o, p}, where λo ≤ λp. We follow Chen, Joslin and Tran (2012) and assume that savers are

dogmatic in their beliefs about disaster risk, so we abstract from any learning process.

Savers’ subjective discount rate is a function of their consumption share, ρj,t = ρj


Cj,t
Cs,t


,

where Cs,t = µo
µo+µp

Co,t +
µp

µo+µp
Cp,t denotes savers’ aggregate consumption. Following

Schmitt-Grohé and Uribe (2003), we assume that ρj (·) depends on the average consump-

tion of type-j savers, so it is taken as given by any individual saver. This formulation, a

form of Uzawa (1968) preferences, implies that there is a unique stationary wealth distri-

bution, but it is otherwise not central to our results.

Let Bj,t = BS
j,t + BL

j,t + BE
j,t denote the net worth of a type-j saver, the sum of short-

term bonds BS
j,t, long-term bonds BL

j,t, and equity holdings BE
j,t. A type-j saver chooses
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consumption Cj,t, long-term bonds BL
j,t, and equity holdings BE

j,t, given an initial net worth

Bj,t > 0, to solve the following problem:

Vj,t(Bj,t) = max
[Cj,z,BL

j,z,BE
j,z]z≥t

Ej,t


ˆ t∗

t
e−
´ z

t ρj,udu
C1−σ

j,z

1 − σ
dz + e−

´ t∗
t ρj,uduV∗

j,t∗(B∗
j,t∗)


,

subject to the flow budget constraint

dBj,t =

(it − πt)Bj,t + rL,tBL

j,t + rE,tBE
j,t + Tj,t − Cj,t


dt +


B∗

j,t − Bj,t


dNt,

and borrowing constraint Bj,t ≥ 0, given Bj,0 > 0, where B∗
j,t = Bj,t + BL

j,t
Q∗

L,t−QL,t
QL,t

+

BE
j,t

Q∗
E,t−QE,t

QE,t
denotes savers’ net worth after the disaster is realized, it is the nominal inter-

est rate, πt is the inflation rate, rL,t ≡ 1
QL,t

+
Q̇L,t
QL,t

− ψL − it is the excess return on long-term

bonds conditional on no disasters, rE,t ≡ Πt
QE,t

+
Q̇E,t
QE,t

− (it − πt) is the excess return on

equities conditional on no disasters, and Tj,t denotes government transfers. The random

arrival time t∗ represents the period in which the aggregate shock hits the economy. V∗
j,t∗

denotes the value function in the disaster state. The savers’ problem in the disaster state

corresponds to a deterministic version of the problem above. The non-negativity con-

straint on Bj,t captures the assumption that households cannot borrow on net.

The savers’ Euler equation for short-term bonds is given by

Ċj,t

Cj,t
= σ−1(it − πt − ρj,t) +

λj

σ


Cj,t

C∗
j,t

σ

− 1


, (1)

where C∗
j,t is the consumption of a type-j saver in the disaster state. The first term captures

the usual intertemporal-substitution force present in RANK models. The second term

captures the precautionary savings motive generated by the disaster risk, and it is analogous

to the precautionary motive that emerges in HANK models with idiosyncratic risk.
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The Euler equation for long-term bonds is given by

rL,t = λj


Cj,t

C∗
j,t

σ

  
price of

disaster risk

QL,t − Q∗
L,t

QL,t
  

quantity of
risk

. (2)

This expression captures a risk premium on long-term bonds, which pins down long-term

interest rates in equilibrium. The premium on long-term bonds is given by the product

of the price of disaster risk, the compensation for a unit exposure to the risk factor, and

the quantity of risk, the loss the asset suffers conditional on switching to the disaster state.

Similarly, the Euler equation for equities is given by

rE,t = λj


Cj,t

C∗
j,t

σ
QE,t − Q∗

E,t

QE,t
. (3)

The expression above pins down the (conditional) equity premium. Note that differences

in the quantity of risk drive the differences in expected returns between stocks and bonds.

Workers’ problem. Workers supply labor and have GHH preferences (Greenwood, Her-

cowitz and Huffman, 1988) over consumption and labor. Their problem is given by

Vw,t(Bw,t) = max
[Cw,z,Nw,z]z≥t

Ew,t




ˆ t∗

t

e−ρw(z−t)

1 − σ


Cw,z −

N1+φ
w,z

1 + φ

1−σ

dz + e−ρw(t∗−t)V∗
w,t∗(Bw,t∗)



 ,

subject to Ḃw,t = (it − πt)Bw,t +
Wt
Pt

Nw,t + Tw,t − Cw,t, and the borrowing constraint Bw,t ≥

0, where Wt is the nominal wage, Pt is the price level, and Tw,t denote fiscal transfers.

We focus on the case where Bw,0 = 0 and ρb is sufficiently large, so workers are con-

strained at all periods.8 As workers are constrained, their beliefs about the disaster prob-

8In Appendix D.1, we introduce “wealthy hand-to-mouth” households into the model. We show that
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ability play no role in the determination of equilibrium. The labor supply is determined

by Wt
Pt

= Nφ
w,t. GHH preferences imply that there is no income effect on labor supply,

roughly in line with the evidence (see e.g. Auclert, Bardóczy and Rognlie, 2021).9

Market-implied probabilities and the SDF. From equations (2) and (3), we can see that,

even though savers disagree on the probability of a disaster, they agree on the value of a

unit of consumption in that state.10 We can then price any cash flow using the beliefs and

marginal utility of either optimistic or pessimistic savers. Instead of using the beliefs of

a specific saver, it is convenient to define the economy’s stochastic discount factor (SDF)

using the aggregate consumption of savers, and the corresponding disaster probability

implied by asset prices, as shown in Proposition 1. Proofs omitted in the text are provided

in the appendix.

Proposition 1 (Market-implied disaster probability). Define the market-implied disaster prob-

ability λt as follows:

λt ≡


µoCo,t

µoCo,t + µpCp,t
λ

1
σ
o +

µpCp,t

µoCo,t + µpCp,t
λ

1
σ
p

σ

, (4)

and let Et[·] denote the expectation operator associated with the arrival rate λt for the disaster

shock. Then, ηt = e−
´ t

0 ρs,zdzC−σ
s,t is a valid stochastic discount factor, i.e., ηt correctly prices all

tradeable assets given the disaster probability λt and an appropriately chosen process for ρs,t.

The market-implied probability λt is a CES aggregator of individual probabilities,

weighted by the corresponding consumption share. Expression (4) is reminiscent of the

our results hold in this case with two types of constrained agents.
9GHH preferences avoid the counterfactual implications caused by income effects on labor supply in

sticky-price heterogeneous-agent models emphasized by Broer, Harbo Hansen, Krusell and Öberg (2020).
10The value of a consumption unit in the disaster state for saver j is λj(C∗

j,t/Cj,t)
−σ, the continuous-time

version of the standard expression for state prices, which is equalized for all savers from equations (2)-(3).
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complete-markets formula with heterogeneous beliefs in Varian (1985).11 In our setting,

consumption shares can potentially move over time, which leads to endogenous time-

variation in the perceived probability of a disaster. We can then price assets as-if the

economy has a representative saver with (endogenous) time-varying beliefs.

Firms’ problem. Intermediate-goods producers are indexed by i ∈ [0, 1] and operate in

monopolistically competitive markets. Final good producers are price takers and combine

intermediate goods to produce the final good. Their demand for variety i is given by

Yi,t =


Pi,t
Pt

−
Yt, and the equilibrium price level is given by Pt =


´ 1

0 P1−
i,t di

 1
1− .

Intermediate-goods producers operate the linear technology Yi,t = AtNi,t. Productiv-

ity in the no-disaster state is given by At = A, and productivity in the disaster state is

given by At = A∗, where 0 < A∗ < A. Intermediate-goods producers choose πi,t =

Ṗi,t/Pi,t, given the initial price Pi,0, to maximize the expected discounted value of real

profits subject to Rotemberg quadratic adjustment costs.12 These costs are rebated back

to shareholders, so they do not represent real resource costs. The optimality condition for

the firms’ problem delivers the non-linear New Keynesian Phillips curve (NKPC):

π̇t =


it − πt + λt

η∗
t

ηt


πt −



ϕA


Wt

Pt
− (1 − −1)A


Yt, (5)

assuming a symmetric initial condition Pi,0 = P0, for all i ∈ [0, 1], and π∗
i,t = 0.

Government. The government is subject to a flow budget constraint

ḊG,t = (it − πt + rL,t)DG,t + ∑
j∈{w,o,p}

µjTj,t,

11 For a discussion of similar aggregation results in heterogeneous-agents asset pricing models, see
Panageas (2020).

12For a version of the model with sticky wages, see Appendix D.2.
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and a No-Ponzi condition limt→∞ E0[ηtDG,t] ≤ 0, where DG,t denotes the real value of

government debt, DG,0 = DG is given, and analogous conditions hold in the disaster state.

Transfers to workers are given by the policy rule Tw,t = Tw(Yt). We assume To,t = Tp,t, and

the government adjusts transfers to savers such that the No-Ponzi condition is satisfied.

In the no-disaster state, monetary policy is determined by the policy rule

it = rn + φππt + ut, (6)

where φπ > 1, ut is a monetary shock, and rn denotes the real rate when πt = ut = 0

at all periods. We assume that in the disaster state there are no monetary shocks, that is,

i∗t = r∗n + φππ∗
t . By abstracting from the policy response after a disaster, we isolate the

impact of changes in monetary policy during “normal times.”

Market clearing. The market-clearing conditions are given by

∑
j∈{w,o,p}

µjCj,t = Yt, ∑
j∈{w,o,p}

µjBS
j,t = 0, ∑

j∈{w,o,p}
µjBL

j,t = DG,t, ∑
j∈{w,o,p}

µjBE
j,t = QE,t,

and µwNw,t = Nt, where Yt =

´ 1

0 Y


−1
i,t di

 −1


and Nt =
´ 1

0 Ni,tdi.

2.2 Equilibrium dynamics

Stationary equilibrium. We define a stationary equilibrium as an equilibrium in which

all variables are constant in each aggregate state. The economy will be in a stationary

equilibrium in the absence of monetary shocks, that is, ut = 0 for all t ≥ 0. Since variables

are constant in each state, we drop time subscripts and write, for instance, Cj,t = Cj and

C∗
j,t = C∗

j . For ease of exposition, we follow Bilbiie (2018) and assume that Tw implements

Cw = Y and C∗
w = Y∗, and a symmetric allocation in the disaster state: C∗

w = C∗
o = C∗

p.
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We discuss a more general case in Appendix A.

The natural interest rate, the real rate in the stationary equilibrium, is given by

rn = ρs − λ


Cs

C∗
s

σ

− 1


,

where ρs and λ are the values of ρs,t and λt in the stationary equilibrium, and 0 < C∗
s < Cs.

We assume that the natural rate is positive, rn > 0. The precautionary motive depresses

the natural interest rate relative to the one that would prevail in a non-stochastic economy.

In a stationary equilibrium where both types of savers are unconstrained, the follow-

ing condition must hold ρo + λo = ρp + λp. As ρj depends on the consumption share, this

condition pins down the stationary-equilibrium consumption and wealth distributions.

For simplicity, we assume that this equality holds when both types have the same net

worth, i.e, Bo = Bp, which implies Co > Cp.

From equation (2), we can pin down the term spread, the difference between the yield

on the long-term bond and the short-term rate, which is given by rL = λ


Cs
C∗

s

σ QL−Q∗
L

QL
,

and Q∗
L < QL. It can be shown that rL = iL − rn, where iL = Q−1

L − ψL is the yield on

the long-term bond. Thus, our model generates an upward-sloping yield curve, where

long-term yields exceed the short rate, consistent with the data.13 Similarly, the equity

premium (conditional on no-disaster) is given by rE = λ


Cs
C∗

s

σ QE−Q∗
E

QE
, and Q∗

E < QE.14

Therefore, the equity premium is positive in the stationary equilibrium.

Households have heterogeneous portfolios in equilibrium. Workers are against the

borrowing constraint and hold no equities or long-term bonds. Optimistic savers are

more exposed to disaster risk than pessimistic investors. The exact composition of their

portfolio is indeterminate, as we have one redundant asset. For concreteness, we focus

13The upward-sloping yield curve is caused by the lack of precautionary savings in the disaster state.
We would obtain similar results by introducing expropriation and inflation in a disaster, as in Barro (2006).

14The unconditional equity premium equals rE minus the expected loss on a disaster. Using λ to compute
the expected loss, the (unconditional) equity premium would be given by λ


(Cs/C∗

s )
σ − 1


(QE − Q∗

E)/QE.
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on the case BE
o = BE

p , so optimists hold more long-term bonds, i.e. BL
o > BL

p . This leads to

a simpler presentation in the analysis that follows.

Log-linear dynamics. We focus on a log-linear approximation of the equilibrium condi-

tions. However, instead of linearizing around the non-stochastic steady state, we linearize

the equilibrium conditions around the (stochastic) stationary equilibrium described above.

Formally, we perturb the allocation around the economy where ut = 0 and λ > 0, while

the standard approach would perturb around the economy where ut = λt = 0. This en-

ables us to capture the effects of (time-varying) precautionary savings and risk premia in

a linear setting, as shown below.15

Let lower-case variables denote log-deviations from the stationary equilibrium, e.g.,

yt ≡ log Yt/Y and cw,t ≡ log Cw,t/Cw. Workers’ consumption is given by

cw,t =
WNw

PY
(wt − pt + nw,t) + T′

w(Y)yt ⇒ cw,t = χyyt, (7)

using wt − pt = φyt and nw,t = yt, where χy ≡ WNw
PY (1 + φ) + T′

w(Y). The coefficient χy

controls the cyclicality of income inequality among workers and savers. We focus on the

case 0 < χy < µ−1
w , such that the consumption of savers, which is given by cs,t =

1−µwχy
1−µw

yt

from the market clearing condition for goods, is also increasing in yt.

Linearizing equation (1) and aggregating across savers, we obtain

ċs,t = σ−1(it − πt − rn) +
λ

σ


Cs

C∗
s

σ

pd,t, (8)

where

pd,t ≡ σ(cs,t − c∗s,t) + λ̂t (9)

15This method differs from the procedure considered by Coeurdacier, Rey and Winant (2011) or
Fernández-Villaverde and Levintal (2018), as we linearize around a stochastic steady state of an economy
with no monetary shocks, instead of the stochastic steady state of the economy with both shocks.
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denotes the price of (disaster) risk, λ̂t ≡ log λt
λ , and we used the linearized discount-rate

function: ρj,t = ρj + σξ(cj,t − cs,t).16 The expression for the price of risk has two terms.

The first term captures the change in the savers’ marginal utility of consumption if the

disaster shock is realized. The second term represents the change in the market-implied

disaster probability after a monetary shock.

Combining condition (7) for borrowers’ consumption, equation (8) for savers’ Euler

equation, and the market-clearing condition for goods, we obtain the evolution of aggre-

gate output. Proposition 2 characterizes the dynamics of aggregate output and inflation,

given the paths of it and pd,t.

Proposition 2 (Aggregate dynamics). Given [it, pd,t]t≥0, the dynamics of output and inflation

is described by the conditions:

i. Aggregate Euler equation:

ẏt = σ̃−1(it − πt − rn) + χpd pd,t, (10)

where σ̃−1 ≡ 1−µw
1−µwχy

σ−1 and χpd ≡ λ
σ̃


Cs
C∗

s

σ
.

ii. New Keynesian Phillips curve:

π̇t = ρπt − κyt, (11)

where ρ ≡ ρs + λ and κ ≡ ϕ−1( − 1)φY.

Condition (10) represents the aggregate Euler equation. This equation has two terms,

capturing the effects of heterogeneous MPCs, aggregate risk, and heterogeneous beliefs.

The first term is the product of the aggregate elasticity of intertemporal substitution (EIS),

16 Uzawa preferences correspond to the case ξ > 0 and constant discount rates correspond to ξ = 0. To
simplify the model’s aggregation, we assume that the slope coefficient σξ is the same for both types.
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σ̃−1, and the real interest rate. The aggregate EIS depends on the cyclicality of inequality

among workers and savers, as captured by χy. As in the work of Werning (2015) and Bil-

biie (2019), heterogeneous MPCs amplify the effect of changes in interest rates if workers’

consumption share is procyclical (i.e., χy > 1), as it implies that σ̃−1 > σ−1.

The second term, χpd pd,t, captures the effect of aggregate risk. To understand the

economic forces behind this expression, it is useful to rewrite equation (9) as pd,t = σ̃yt +

λ̂t where we used that y∗t = 0. Then, the aggregate Euler equation can written as

ẏt = σ̃−1(it − πt − rn) + δyt + χpd λ̂t,

where δ ≡ λ


Cs
C∗

s

σ
. In the absence of belief heterogeneity, so λ̂t = 0, we can write output

as yt = −σ̃−1 ´ ∞
t e−δ(s−t)(is − πs − rn)ds. Hence, a positive δ dampens the effect of future

real interest rates, as in the discounted Euler equation of McKay, Nakamura and Steinsson

(2017). In our setting, this is the result of a precautionary motive in response to aggregate

disaster risk instead of idiosyncratic income risk. The last term, χpd λ̂t, captures the effect

of heterogeneous beliefs. An increase in the market-implied disaster probability implies

that pessimistic investors have a higher consumption share, as shown in Proposition 1.

This increase in pessimism triggers a stronger precautionary motive in the aggregate.

Finally, Proposition 2 derives the NKPC. As in a textbook New Keynesian model, infla-

tion is given by the present discounted value of future output gaps, πt = κ
´ ∞

t e−ρ(s−t)ysds.

Fiscal backing. The log-linearized government’s flow budget constraint is given by

dGḋG,t = iLdGdG,t + dG(it − πt + rL,t − iL)− (χτyt + τt) , (12)

where dG ≡ DG
Y , and χτyt + τt denotes the primary surplus. The coefficient χτ ≡ −µwT′

w(Y)

captures the elasticity of tax revenues to output and τt ≡ −∑j∈{o,p} µj
Tj,t−Tj

Y represents
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taxes on savers. As the government adjusts τt to ensure the No-Ponzi condition is satis-

fied, we refer to τt as the fiscal backing to the monetary shock.

2.3 Monetary policy and risk premia

Asset prices. The response of asset prices to monetary policy depends crucially on the

behavior of the price of disaster risk, as shown in equations (2) and (3). Given the (lin-

earized) price of risk in equation (9), we can price any financial asset in this economy. For

example, the price of the long-term bond in period zero is given by

qL,0 = −
ˆ ∞

0
e−(ρ+ψL)t(it − rn)dt

  
path of nominal interest rates

−
ˆ ∞

0
e−(ρ+ψL)trL pd,tdt

  
term premium

. (13)

The yield on the long-term bond, expressed as deviations from the stationary equilibrium,

is given by −Q−1
L qL,0, which can be decomposed into two terms: the path of nominal

interest rates, as in the expectations hypothesis, and a term premium, capturing variations

in the compensation for holding long-term bonds. The term premium depends on the

price of risk, pd,t, and the asset-specific loading rL. Because the term premium responds

to monetary shocks, the expectation hypothesis does not hold in this economy.

The pricing condition for equities is analogous to the one for long-term bonds:

qE,0 =
Y

QE

ˆ ∞

0
e−ρtΠ̂tdt

  
dividends

−
ˆ ∞

0
e−ρt [it − πt − rn + rE pd,t] dt

  
discount rate

, (14)

where Π̂t = yt − WN
PY (wt − pt + nt). Equity prices respond to changes in monetary policy

through two channels: a dividend channel, capturing changes in firms’ profits, and a dis-

count rate channel, capturing changes in real interest rates and risk premia. Risk premia

depends on the price of risk, pd,t, and the asset-specific loading rE.
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Market-implied disaster probability. Recall that the price of risk depends on yt and λ̂t.

We now characterize λ̂t. Log-linearizing equation (4), we obtain

1
σ

λ
1
σ λ̂t = µc,oµc,p


λ

1
σ
p − λ

1
σ
o

 
cp,t − co,t


, (15)

where µc,j ≡
µjCj

µoCo+µpCp
, for j ∈ {o, p}. The market-implied disaster probability increases

when the monetary shock redistributes wealth towards pessimistic savers. As shown in

Appendix A.3, the relative consumption of the two types of savers evolves according to

ċp,t − ċo,t = −ξ(cp,t − co,t), (16)

and the law of motion of relative net worth bp,t − bo,t is given by

ḃp,t − ḃo,t = ρ(bp,t − bo,t)− χb,c(cp,t − co,t) + χb,cs cs,t,

where the coefficients χb,c and χb,cs are functions of portfolios and returns in the station-

ary equilibrium. Given that the evolution of relative net worth depends on cs,t, and cs,t

depends on yt, we must simultaneously solve for [cp,t − co,t, bp,t − bo,t]∞0 and [it, yt, πt]∞0 .

In this case, obtaining analytical results would likely be infeasible. We show next that this

system satisfies an approximate block recursivity property, where we can solve for cp,t − co,t

and bp,t − bo,t independently of (yt, πt), provided the effect of cs,t on risk premia is small.

Proposition 3 (Approximate block recursivity). Suppose rkσcs,t is small for k ∈ {L, E}, i.e.

rkσcs,t = O(||it − rn||2). Then, the market-implied disaster probability λ̂t and relative net worth

bp,t − bo,t can be solved independently of (yt, πt), and they are given by

λ̂t = e−ψλtλ̂0, (17)
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bp,t − bo,t = e−ψλt(bp,0 − bo,0), and ψλ = ξ. If it − rn = e−ψmt(i0 − rn), then λ̂0 is given by

λ̂0 = λ(i0 − rn), (18)

where λ ≥ 0 and the inequality is strict if and only if λp > λo.

Proposition 3 shows that we can solve for λ̂t and bp,t − bo,t independently of output

and inflation if rkσcs,t is small. If rkσcs,t is second-order on the size of the monetary shock,

its first-order impact on risk premia is negligible. In this case, we can solve for λ̂t and

bp,t − bo,t independently of (yt, πt). As the dynamics of (yt, πt) depends on λ̂t, but λ̂t

does not depend on (yt, πt), we say the system is (approximately) block recursive. In Ap-

pendix A.4, we assess the quantitative importance of the term rkσcs,t. For our calibrated

parameters, we find that risk premium effects on stocks and bonds when we include the

term rkσcs,t are nearly identical to the solution when these terms are omitted.

Uzawa preferences ensure that the effects of the monetary shock on the price of risk

are transitory. If ξ = 0, so subjective discount rates are constant, then ψλ = 0 and a

temporary monetary shock has a permanent effect on λ̂t. The reason is that a monetary

policy surprise leads to permanent changes in relative net worth and relative consump-

tion in this case. With Uzawa preferences, savers’ net worth eventually converge to their

stationary-equilibrium level, so the effect on λ̂t is transitory.

An important implication of equation (18) is that the price of risk increases after a

contractionary monetary shock. A monetary tightening redistributes wealth away from

optimistic investors, as they are more exposed to risky assets. The economy becomes

on average more pessimistic, which raises the required compensation for holding risky

assets. The increase in risk premia in response to contractionary monetary shocks is con-

sistent with the evidence in, e.g., Gertler and Karadi (2015) and Hanson and Stein (2015).

Notice that investor heterogeneity is necessary for this result, as λ̂t = 0 when λo = λp.
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The four-equation system. Proposition 3 allows us to write the price of risk as follows:

pd,t = σ̃yt + e−ψλtλ̂0, (19)

where λ̂0 is a function of the path of nominal interest rates. Combining the expression

above for the price of risk with the interest rate rule (6), the aggregate Euler equation (10),

and the NKPC (11), we obtain a four-equation system describing the economy’s aggregate

dynamics. The system is similar to the textbook three-equation model (see, e.g., Galí,

2015). The interest rate rule and the NKPC are isomorphic to the ones in the simple model.

Equation (10) is analogous to the standard Euler equation but features an additional term

that depends on the price of risk, pd,t. It is this term that connects aggregate risk, asset

prices, and macroeconomic variables. Finally, equation (19) characterizes how the price

of risk depends on aggregate output and changes in monetary policy.

The approximate block-recursivity is crucial to allow us to write the system in terms of

aggregate variables, without having to simultaneously solve for the dynamics of individ-

ual balance sheets. The portfolio dynamics is summarized by two coefficients: λ, which

captures the pass-through of nominal rates to the initial price of risk, and ψλ, which con-

trols the persistence of the price of risk. Both coefficients depend on investors’ beliefs and

their portfolio holdings in the stationary equilibrium.

Comparison with uncertainty shocks. Monetary shocks lead to an endogenous change

in the market-implied disaster probability. A related literature studies the effects of ex-

ogenous uncertainty shocks in New Keynesian models (see e.g. Basu and Bundick 2017

and Caballero and Simsek 2020). In this literature, monetary policy leans against the un-

certainty shock, so interest rates and risk premia move in opposite directions. In contrast,

a monetary shock causes an increase in real rates and risk premia in our setting. Move-

ments in risk premia then amplify the impact of monetary policy on asset prices. Similar
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to these papers, our analysis requires that the monetary policy rule does not track the

natural rate in response to changes in the risk premium.

The mechanism through which monetary policy affects λ̂t is reminiscent of the redis-

tribution channel in Kekre and Lenel (2022). Our approximate block recursivity property

allows us to incorporate this mechanism into a New Keynesian model in a tractable way,

as the aggregate impact of heterogeneous portfolios is summarized by λ̂t.

3 Monetary Policy and Wealth Effects

We considered so far how monetary policy affects risk premia and asset prices through

their impact on the price of risk, pd,t, and the market-implied disaster probability, λ̂t. We

study next how the revaluation of real and financial assets affects the real economy.

3.1 Risk-premium neutrality

Asset revaluations caused by monetary policy have received significant attention recently.

For instance, Cieslak and Vissing-Jorgensen (2020) show that policymakers follow stock

market movements due to its potential (consumption) wealth effect. In contrast, Cochrane

(2020) and Krugman (2021) argue that wealth gains on “paper” are not relevant for house-

holds who simply consume their dividends. The next proposition provides exact condi-

tions under which such neutrality result would hold in our model.

Proposition 4 (Risk-premium neutrality). Suppose the government uses a consumption tax on

savers to neutralize movements in λ̂t, that is, τc
t satisfies ˙̂τc

t = λ


Cs
C∗

s


λ̂t, where τ̂c

t ≡ log(1 +

τc
t ), τc

t = τc,∗
t , and the revenue is rebated back to savers such that it is budget neutral for them.

Then, [yt, πt, it]∞0 is independent of λ̂t. Moreover, the fiscal backing τt is independent of λ̂t if one

of the following conditions hold: i) dG = 0; ii) dG > 0 and ψL = ∞; iii) dG > 0 and ψL = 0.
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Figure 1: Output and asset prices response

Proof. Savers’ Euler equation for the riskless bond is now given by ċs,t = σ−1(it − πt −

rn − ˙̂τc
t ) +

λ
σ


Cs
C∗

s

σ 
λ̂t + σcs,t


, which is independent of λ̂t if ˙̂τc

t = λ


Cs
C∗

s

σ
λ̂t. As τc

t =

τc,∗
t , Euler equations for risky assets are not affected. The aggregate Euler equation takes

the same form as in Eq. (10), but with χpd = 0. Combining it with Eq. (6) and Eq. (11),

we obtain [yt, πt, it] independently of λ̂t. The fiscal backing τt will also be independent

of λ̂t if one of the following three conditions hold: i) dG = 0, so the fiscal backing simply

offsets the present value of transfers to workers; ii) dG > 0 and ψL → ∞ = 0, so rL = 0;

iii) dG > 0 and ψL = 0, so the government does not need to issue new debt.

Under the conditions of Proposition 4, asset revaluations caused by monetary policy

have no real effects. Portfolio heterogeneity among savers helps improve the model’s

asset-pricing implications, but it has no bearing on how monetary shocks ultimately affect

the real economy. In particular, output and inflation are independent of λp − λo. Due to

the increase in the risk premium, an economy with heterogeneous beliefs would have a

larger drop in asset prices after a monetary contraction than an economy where λp = λo.

Importantly, the real rate would be the same in the two economies, so they only differ

in the behavior of risk premia. Even though stocks and bonds suffer a larger drop in

value, the response of output and inflation is the same as in the economy without belief

heterogeneity. Figure 1 illustrates this result in a numerical example, which shows output

and asset prices in two economies, with and without belief heterogeneity. Despite large

differences in asset prices, the response of output is the same in both economies.
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3.2 Wealth effects

But why do households in the economy that suffered a larger drop in asset prices con-

sume as much as households in the economy with a smaller fall in asset prices? How

do households in the former economy, who have lower initial wealth, even afford the

same level of consumption as households in the latter economy? To better understand

this result, we need to look at the household’s intertemporal budget constraint.

Asset revaluation. Household j’s intertemporal budget constraint (IBC) is given by:

E0


ˆ ∞

0

ηt

η0
Cj,tdt


= Bj,0 + E0


ˆ ∞

0

ηt

η0
Tj,tdt


, (20)

Consider first the revaluation of the household’s financial assets after a monetary shock.

Up to first order, it is given by Bj,0 − Bj ≈ BE
j qE,0 + BL

j qL,0. When interest rates increase,

the value of households’ stocks and bonds decreases, making them poorer. However, an

increase in the interest rate also impacts the cost of the households’ consumption bundle.

Denote the value of a claim on consumption (i.e., the left-hand side of the IBC) by QCj,t ≡

Et


´ ∞

t
ηz
ηt

Cj,zdz

. Linearizing the value of the consumption claim, we obtain a pricing

condition analogous to the one for stocks and bonds (see equations 13 and 14):

qCj,0 =
Cj

QCj

ˆ ∞

0
e−ρt(cj,t + χc∗j

c∗j,t)dt −
ˆ ∞

0
e−ρt


it − πt − rn + rCj pd,t


dt, (21)

where χc∗j
≡ δ

r∗n

C∗
j

Cj
and rCj ≡ λ


Cs
C∗

s

σ QCj
−Q∗

Cj
QCj

. The first term represents the change in

the household’s consumption bundle, while the second term represents the change in its

cost. We define household j’s wealth effect as the difference between the revaluation of the

household’s wealth plus the transfers claim and the change in the cost of the consumption
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bundle, that is,

Ωj,0


wealth effect

=
1
Cj


BL

j qL,0 + BE
j qE,0 + QTj qTj,0



  
asset-revaluation effect

+
QCj

Cj

ˆ ∞

0
e−ρt


it − πt − rn + rCj pd,t


dt

  
consumption’s discount-rate effect

,

where QTj,t ≡ Et


´ ∞

t
ηz
ηt

Tj,zdz


corresponds to the value of the transfers claim. Notice

that this implies that we can write the IBC as

ˆ ∞

0
e−ρt


cj,t + χc∗j

c∗j,t


dt = Ωj,0. (22)

Expression (22) shows that a shock relaxes the household’s budget constraint if Ωj,0 > 0,

as households can then consume more in every period or state. The opposite happens if

Ωj,0 < 0. As Ωj,0 captures a shift in the household’s intertemporal budget constraint, we

refer to Ωj,0 as a wealth effect, consistent with its use in microeconomic theory.17 Finally,

we define the aggregate wealth effect as the sum of the individual households’ wealth

effect, that is, Ω0 ≡ ∑j∈{w,o,p}
µjCj

Y Ωj,0.

A special case. To illustrate the economics behind the risk-premium neutrality result,

consider a household who simply consumes the dividends from her equity investments,

so BL
j = QTj = 0. To focus on discount-rate changes, assume yt = 0. Then, Ωj,0 is

Ωj,0 = −
BE

j

Cj

ˆ ∞

0
e−ρt [it − πt − rn + rE pd,t] dt +

QCj

Cj

ˆ ∞

0
e−ρt


it − πt − rn + rCj pd,t


dt. (23)

The first term corresponds to the drop in equity prices due to an increase in discount

rates. The second term corresponds to the drop in the amount of wealth required to

finance the initial path of consumption. As consumption equals dividends, the value

17We show in Appendix B.2 that Ωj,0 corresponds to (minus) the Hicksian wealth compensation, as
defined in Mas-Colell, Whinston and Green (1995).
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of the consumption claim equals the value of equity investments, BE
j = QCj , and the

risk compensation on the consumption claim equals the risk compensation on equities,

rE = rCj . Therefore, the wealth effect is zero in this case: Ωj,0 = 0. This result is analogous

to the textbook effect of interest rate changes. If the household is neither a net buyer nor

a net seller of assets, interest rate changes have no wealth effect.18

A similar point emerges in the discussion of capital-gains taxation. Discussing the im-

pact of a drop in interest rates for an investor (Bob) whose consumption equals dividends

every period, Cochrane (2020) says

"When the interest rate goes down, it takes more wealth to finance the same

consumption stream. The present value of liabilities – consumption – rises just

as much as the present value of assets, so on a net basis Bob is not at all better."

In our terms, the increase in financial wealth does not translate into a positive wealth

effect, as the increase in the stock price exactly cancels out the increase in the value of the

consumption claim after a drop in interest rates when consumption equals dividends.

Proposition 4 shows that a similar logic holds for the aggregate economy. For instance,

in the absence of government debt, the household sector’s consumption equals the div-

idends from their assets, which includes their human wealth. With government debt,

changes in discount rates may cause a redistribution between the household sector and

the government, which can be offset by movements in the fiscal backing τt.

The role of taxes and comparison with log utility. We have seen that the wealth effect

measures the extent a shock tightens households’ budget constraints. As the revenue

from the consumption tax introduced in Proposition 4 is rebated back to savers, the tax

does not affect the wealth effect. The consumption tax just offsets the precautionary effect.

18In a two-period model, we would have C0 +
1

1+r C1 = Y0 +
1

1+r Y1 ≡ B0. If Ct = Yt, a small increase in
r would not tighten the household’s budget constraint, despite a fall in the value of the assets (B0).
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The wealth effect is independent of preferences, so the discussion above holds even

with log utility. In the absence of Uzawa preferences, consumption is proportional to

wealth in that case. Nevertheless, the wealth effect is zero when consumption equals div-

idends. Appendix B.3 shows that, in this case, the consumption response coincides with

the compensated (Hicksian) demand, reflecting substitution and precautionary effects.

3.3 Precautionary motives and heterogeneous MPCs

The behavior of the wealth effect illustrates why changes in asset prices are not sufficient

to generate a drop in consumption. Next, we show that differences in MPCs across agents

with heterogeneous beliefs is at the core of the real effects of movements in risk premia.

Redistribution and iMPCs. The next lemma shows that differences in beliefs translate

into differences in intertemporal MPCs (iMPCs).

Lemma 1 (Intertemporal MPCs). The iMPC at time t for saver j ∈ {o, p} is given by

Mj,t ≡
1
Cj

∂Cj,t

∂Ωj,0
=

(ρ + ξ)

1 + χλ
1
σ
j

e−ξt, M∗
j,t ≡

1
Cj

∂C∗
j,t

∂Ωj,0
=

(ρ + ξ)χ∗λ
1
σ
j

1 + χλ
1
σ
j

e−ξt,

where χ and χ∗ are positive constants. Moreover, iMPCs satisfy the following condition:

ˆ ∞

0
e−ρt


Mj,t +

δ

r∗n
M∗

j,t


dt = 1. (24)

The iMPC at period t corresponds to the response of consumption at this date with

respect to a change in wealth at period 0.19 Given the assumption of Uzawa preferences,

iMPCs are decaying over time, consistent with the recent evidence by, e.g., Fagereng,

19 The standard definition of MPC corresponds to the iMPC at t = 0. For a discussion of iMPCs in the
context of HANK models, see Auclert, Rognlie and Straub (2018). Auclert (2019) analyzes the redistribution
channel of monetary policy in a model without aggregate risk.
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Holm and Natvik (2021) and Borusyak, Jaravel and Spiess (2024).20An important impli-

cation of Lemma 1 is that optimistic investors have a higher iMPC in the no-disaster state

than pessimistic investors, and the reverse pattern holds in the disaster state:

Mo,t > Mp,t, M∗
o,t < M∗

p,t,

when λo < λp. These differences in iMPCs are tightly connected to movements in λ̂t.

Proposition 5. The market-implied disaster probability is given by

λ̂t = χλ


Mo,t −Mp,t

 
Ωp,0 − Ωo,0


, (25)

where χλ is a positive constant given in the appendix.

Proposition 5 shows that λ̂t reflects the interaction between differences in iMPCs,

Mo,t −Mp,t, and redistribution induced by monetary policy, Ωp,0 − Ωo,0. Hence, differ-

ences in iMPCs play an important role in how asset prices respond to monetary shocks.

Precautionary motive and heterogeneity. Differences in iMPCs create a wedge in the

precautionary motive of the heterogeneous-beliefs economy relative to an economy with

a representative saver. To see this fact, consider the (linearized) Euler equation for saver

j:

ċj,t = σ−1(it − πt − rn)
  

intertemporal substitution

+
λj

σ


Cj

C∗
j

σ

× σ(cj,t − c∗j,t)  
precautionary motive

− ξ(cj,t − cs,t)  
Uzawa preferences

.

20 Note that we obtain time-varying iMPCs even in the case of log utility, given the endogeneity of
discount rates. We recover the standard log-utility result when discount rates are constant.

28



Using the fact that cs,t = ∑j∈{o,p}
µjCj

µoCo+µpCp
cj,t, we can aggregate across savers:

ċs,t = σ−1(it − πt − rn) +
λ

σ


Cs

C∗
s

σ

∑
j∈{o,p}

µjCj

µoCo + µpCp
σ(cj,t − c∗j,t).

The aggregate Euler equation depends on the intertemporal-substitution channel and

the average precautionary motive. Interestingly, the average precautionary motive is not

equal to σ(cs,t − c∗s,t), the precautionary motive in an economy with a representative saver:

∑
j∈{o,p}

µjCj

µoCo + µpCp
σ(cj,t − c∗j,t) = σ(cs,t − c∗s,t) + λ̂t,

where the equality comes from the optimality condition for risky assets. Notice that we

typically have cs,0 < 0 after a contractionary shock, and we assume that c∗s,t = 0, which

would weaken the precautionary motive in the absence of heterogeneity. In contrast,

λ̂t > 0 after a contractionary shock, which tends to strengthen the precautionary mo-

tive. The difference is explained by the negative correlation between iMPCs and wealth

redistribution after the shock.

Macro-finance separation. A previous literature considered the related concept of macro-

finance separation. For instance, Tallarini Jr. (2000) and Gourio (2012) studied economies

where fluctuations in risk premia do not affect consumption, investment, or output. It

is crucial for their results, however, that the EIS is equal to one. This ensures that the

real interest rate exactly offsets movements in risk premia, so the price of the risky asset

remains unchanged.

In contrast, our result presents conditions under which changes in asset prices, driven

by changes in risk premia, have no impact on real equilibrium outcomes. Unlike the

macro-finance separation result, our analysis requires that asset prices adjust following

the initial shock, allowing us to evaluate the impact of the portfolio revaluations on
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savers’ consumption decisions. To isolate the transmission via asset prices, we introduce

consumption taxes designed to counterbalance the time-varying precautionary motive as-

sociated to fluctuations in λ̂t. Proposition 4 then shows that two economies with different

levels of belief disagreement and, therefore, risk premia, will exhibit not only identical

paths of output and inflation but also the same path of nominal and real interest rates.

As the real rate is the same while the price of the risky assets varies between the two

economies, we can conclude that differences in financial wealth alone do not affect the

real variables of the economy.21

3.4 Intertemporal substitution, risk, and wealth effect

We consider next the response of output and inflation to changes in monetary policy in

the absence of the consumption tax. Consider the dynamic system in Proposition 2:



 ẏt

π̇t



 =



 δ −σ̃−1

−κ ρ







 yt

πt



+



 νt

0



 ,

where we have substituted pd,t with the expression in equation (9), and νt ≡ σ̃−1(it −

rn) + χpd λ̂t depends only on the path of nominal interest rates. The eigenvalues of the

system are given by

ω =
ρ + δ +


(ρ + δ)2 + 4(σ̃−1κ − ρδ)

2
, ω =

ρ + δ −

(ρ + δ)2 + 4(σ̃−1κ − ρδ)

2
.

The following assumption, which we assume holds for all subsequent analysis, guaran-

tees that the eigenvalues are real-valued and have opposite signs, i.e., ω > 0 and ω < 0.

Assumption 1. The following condition holds: σ̃−1κ > ρδ.

21In Online Appendix D.3 we show that our model can reproduce the macro-finance separation result.
We also extend our risk-premium neutrality result to an economy with investment.
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This assumption implies that local uniqueness of the equilibrium requires a positive

coefficient on inflation in the Taylor rule. We show in Appendix B.6 that the equilibrium

is locally unique if φπ ≥ 1 − ρδ

σ̃−1κ
≡ φπ. Assumption 1 ensures that φπ > 0.

Output. We extend next the analysis in Caramp and Silva (2023), which decomposes the

equilibrium path of output into an intertemporal substitution effect (ISE) and a wealth effect,

to our setting with aggregate risk. We focus on the case in which the monetary shock

induces an exponentially decaying path for the nominal interest rates; that is, we assume

it − rn = e−ψmt(i0 − rn), where ψm determines the persistence of interest rates.22

Proposition 6 (Aggregate output in D-HANK). Suppose that it − rn = e−ψmt(i0 − rn) and

ψk ∕= −ω, for k ∈ {m, λ}. The path of aggregate output is then given by

yt = σ̃−1ŷm,t

  
ISE

+ χλŷλ,t
  

time-varying
precautionary motive

+ (ρ − ω)eωtΩ0

  
GE factor×

aggregate wealth effect

, (26)

where χλ ≡ χpd λ, Ω0 ≡ ∑j∈{w,o,p}
µjCj

Y Ωj,0, and ŷk,t is given by

ŷk,t =
(ρ − ω) eωt − (ρ + ψk) e−ψkt

(ω + ψk) (ω + ψk)
(i0 − rn), (27)

and satisfies
´ ∞

0 e−ρtŷk,tdt = 0, ∂ŷk,0
∂i0

< 0, for k ∈ {m, λ}.

Proposition 6 shows that output can be decomposed into three terms: an intertemporal-

substitution effect (ISE), a time-varying precautionary motive, and the aggregate wealth

effect Ω0.

The first term captures the standard intertemporal substitution channel present in

RANK models. It depends on the aggregate EIS, σ̃−1 = 1−µw
1−µwχy

σ−1, and ŷm,t given in

22The proof of the proposition contains the general case.
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(27). Notice that, even though only a fraction 1 − µw of agents substitute consumption

intertemporally, the ISE does not necessarily get weaker as we reduce the mass of savers

in the economy. As we reduce 1 − µw, less agents are capable of intertemporal substi-

tution, but the amplification from hand-to-mouth agents gets stronger. The two effects

exactly cancel out when χy = 1. Importantly, the ISE is equal to zero on average, i.e.
´ ∞

0 e−ρtŷm,tdt = 0. An increase in interest rates shifts demand from the present to the

future, but by itself it does not change the present value of aggregate demand.

The second term captures the effect of the time-varying precautionary motive. This

term is equal to zero in the absence of belief heterogeneity. In this case, the model be-

haves as a TANK model with zero liquidity (see e.g. Bilbiie 2019 and Broer et al. 2020).

As with the EIS, the precautionary motive shifts demand from the present to the future

without changing its present value, that is,
´ ∞

0 e−ρtŷλ,tdt = 0. The persistence of the pre-

cautionary effects is controlled by ψλ, as it depends on the rate at which the balance sheet

of optimistic investors recover after a contractionary shock.

The third term in expression (26) plays an important role, as the aggregate wealth

effect determines the average response of output to the monetary shock. The GE factor

shifts the impact of the wealth effect over time, as we have that (ρ−ω)
´ ∞

0 e−(ρ−ω)tdt = 1.

Everything else constant, an increase in Ω0 raises output in all periods by ρΩ0, creating

a parallel shift in output over time. In general equilibrium, a positive aggregate wealth

effect leads to inflation on impact, which reduces the real rate and shifts consumption to

the present. The GE factor shows that the effect of Ω0 on y0 exceeds the effect on average

consumption, ρΩ0, by the factor ρ−ω
ρ > 1.

This decomposition will be relevant in the interpretation of our quantitative results in

Section 4. In particular, it will allow us to assess the importance of standard channels cap-

tured in RANK models (e.g., the intertemporal-substitution effect), relative to channels

specific to models with risk (e.g., the precautionary motive).
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Inflation. The next proposition characterizes the behavior of inflation.

Proposition 7 (Inflation in D-HANK). Suppose it − rn = e−ψmt(i0 − rn) and ψk ∕= −ω for

k ∈ {m, λ}. The path of inflation is given by

πt = σ̃−1π̂m,t + χλπ̂λ,t + κeωtΩ0, (28)

where π̂k,t =
κ(eωt−e−ψkt)

(ω+ψk)(ω+ψk)
(i0 − rn), π̂k,0 = 0 and ∂π̂k,t

∂i0
≥ 0, for k ∈ {m, λ}.

Inflation can be analogously decomposed into three terms. The first two terms capture

the impact of the ISE and time-varying precautionary motive, while the last term captures

the impact of the aggregate wealth effect. Because π̂k,0 = 0, the first two terms are initially

zero. Initial inflation is then entirely determined by the aggregate wealth effect.

Implementability. In Appendix B.6, we show that, for any given path of [ut]∞0 , there is

a unique equilibrium path [it, τt]∞0 provided φπ ≥ 1 − ρδ

σ̃−1κ
. Conversely, for any given

path of [it, τt]∞0 , there is a unique path of monetary shocks [ut]∞0 that implements this path

of policy variables in equilibrium. Hence, there is no loss of generality in expressing the

solution in terms of policy variables it and τt instead of directly in terms of ut.

Propositions 6 and 7 solve for output and inflation in terms of the nominal rate and the

aggregate wealth effect Ω0. The next expression shows that the aggregate wealth effect

can be written as a function of only [it, τt]∞0 :23

Ω0 =
ρ − ω

(ρ − ω)χτ + dGκ


ˆ ∞

0
e−ρt∆BL

t (it − rn + rLλ̂t)dt − dG

ˆ ∞

0
e−ρtπ̂tdt −

ˆ ∞

0
e−ρtτtdt


, (29)

where π̂t ≡ σ̃−1π̂m,t + χλπ̂λ,t is a function of [it]∞0 , ∆BL
t ≡ (1− e−ψLt)dG, and we assumed

χτ +
dGκ
ρ−ω > 0. Equation (29) shows that changes in discount rates affect the aggregate

23To obtain Eq. (29), plug yt and πt from Propositions 6 and 7 into Eq. (23), aggregate across households,
and solve for Ω0.
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wealth, for a given fiscal backing, only through government bonds. In particular, the

excess return on equities, as captured by rE, does not affect Ω0.

In our quantitative analysis, we consider two approaches to discipline the monetary

shocks. First, we estimate the fiscal backing directly from the data and find the monetary

shock that implements the empirically estimated fiscal backing. Second, we consider the

monetary shock that implements the minimum state-variable (MSV) solution (see McCal-

lum 1999). This corresponds to the method used to compute the solution of the textbook

NK model. The MSV corresponds to the unique solution where output and inflation are

linear functions of contemporaneous values of it and λ̂t.

4 The Quantitative Importance of Wealth Effects

In this section, we study the quantitative importance of risk and wealth effects in the

transmission of monetary shocks. While the model is stylized and lacks some important

dimensions present in state-of-the-art quantitative HANK models (e.g., rich MPC hetero-

geneity), this exercise is useful to assess the economic relevance of these channels.

4.1 Calibration

The parameter values are chosen as follows. The discount rate of savers is chosen to

match a natural interest rate of rn = 1%. We assume a Frisch elasticity of one, φ = 1, and

set the elasticity of substitution between intermediate goods to  = 6, common values

adopted in the literature. The fraction of workers is set to µw = 30%, consistent with the

fraction of (poor and wealthy) hand-to-mouth agents in the U.S. estimated by Kaplan,

Violante and Weidner (2014). The parameter dG is chosen to match a ratio of the market

value of public debt in the hands of the private sector to GDP of 28% and ψL is chosen to

match a duration of five years, roughly in line with the historical average between 1962
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and 2007 for the United States (Hall and Sargent 2011). The parameter T′
w(Y) is chosen

such that χy = 1, which requires countercyclical transfers to balance the procyclical wage

income.24 A value of χy = 1 is consistent with the evidence in Cloyne, Ferreira and

Surico (2020) on the monetary policy impact on the income of borrowers (proxing for

hand-to-mouth agents) and savers, where they show that the net income of mortgagors

and non-mortgagors reacts similarly to monetary shocks.

To calibrate the disaster risk parameters, we follow closely Barro (2006). We set λ (the

steady-state disaster intensity) to match an annual disaster probability of 1.7%. To better

map the model to the data, we consider an extension where the magnitude of the drop in

productivity, ζA ≡ 1 − A∗
A , is stochastic and draw from a given distribution known by all

agents. We adopt the empirical distribution estimated by Barro (2006), where ζA ranges

from 15% to 64%, with an average of 29%. Introducing a random disaster size has only a

minor effect on the analytical expressions, with the term (C∗
s )

−σ being typically replaced

by E[(C∗
s )

−σ], where the expectation is taken over the disaster size ζA.25

The risk-aversion coefficient is set to σ = 4, a value within the range of reasonable

values according to Mehra and Prescott (1985), but substantially larger than σ = 1, a value

often adopted in macroeconomic models. Our calibration implies an equity premium in

the stationary equilibrium of 7.0%, in line with the observed equity premium (Campbell

2003). Moreover, by setting σ = 4 we obtain a micro EIS of σ−1 = 0.25, in the ballpark of

an EIS of 0.1 as recently estimated by Best, Cloyne, Ilzetzki and Kleven (2020), and in line

with the estimates for asset holders by Havránek (2015) of 0.3. The pricing cost parameter

ϕ is chosen to match a slope of the Phillips curve of κ = 0.30, which is the value for κ in

the textbook model with an average price duration of three quarters and σ = 4.

24In our baseline model, a counterfactually large reaction of transfers is required to achieve χy = 1. We
show in Appendix C.2 that a version of the model with sticky wages delivers values of χy close to one when
transfers are calibrated to match the retention function in Heathcote, Storesletten and Violante (2017).

25With a risk aversion of σ = 4 and the estimated distribution of disaster sizes, the expected change in
marginal utility conditional on a disaster is given by E


(1 − ζA)

−σ

= 7.69.
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Figure 2: Estimated fiscal response to a monetary policy shock

Note: IRFs computed from a VAR identified by a recursiveness assumption.Variables included: real GDP per capita, CPI inflation,
real consumption per capita, real investment per capita, capacity utilization, hours worked per capita, real wages, tax revenues over
GDP, government expenditures over GDP, federal funds rate, 5-year constant maturity rate and the real value of government debt
over GDP. We estimate a four-lag VAR using quarterly data for the period 1962:1-2007:3. The real value of government debt and the
5-year rate are ordered last, and the fed funds rate is ordered third to last. Gray areas are bootstrapped 68% confidence bands.

For the policy variables, we follow Jiang, Lustig, Van Nieuwerburgh and Xiaolan

(2019) and estimate a standard VAR augmented with fiscal variables and compute empir-

ical IRFs applying the recursiveness assumption. We provide the details of the estimation

in Appendix E. Figure 2 shows the dynamics of fiscal variables in the estimated VAR in

response to a contractionary monetary shock that increases the policy rate by 100 bps on

impact. Government revenues fall in response to the contractionary shock, while govern-

ment expenditures fall on impact and then turn positive, likely driven by the automatic

stabilizer mechanisms embedded in the government accounts. The present value of in-

terest payments increases by 36 bps and the initial value of government debt drops by 18

bps.26 The present value of primary surpluses increases by just 9 bps.
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Figure 3: Nominal interest rate and forward curve.

Note: The left panel shows the IRF for the Federal Funds rate in the VAR and the path of nominal interest rates in the model. The
right panel shows the response of forward rates to a 100 bps change in the two-year yield, as estimated by Hanson and Stein (2015),
and the corresponding forward curve in the model when the monetary shock is scaled such that the two-year yield increases by 100
bps. Grey areas are confidence bands.

4.2 Asset-pricing implications of D-HANK

We focus on a monetary shock that generates a path for the nominal interest rate that can

be represented by it − rn = e−ψmt(i0 − rn). We set ψm = 0.33, which gives a half-life of

roughly two quarters, so the path of nominal interest rates closely matches the impulse-

response of the Federal Funds rate from the VAR, as shown in the left panel of Figure 3.

To obtain λ̂t, we need to calibrate λ, which determines the elasticity of asset prices to

monetary shocks, and ψλ, which captures the persistence of changes in risk premia. We

calibrate these parameters to match two sets of moments. First, the initial response of the

5-year yield on government bonds to a monetary shock. We find that a 100 bps increase

in the nominal interest rate leads to a 32 bps increase in the 5-year yield. Second, the

response of the entire forward curve around FOMC meetings, as estimated by Hanson and

Stein (2015). The solid line in the right panel of Figure 3 shows their estimates of the

26 The present discounted value of interest payments is calculated as ∑T
t=0


1+g
1+iL

 t
4

d

g
t (îL,t − π̂t)


, and

similarly for other variables, where T is the truncation period, îL,t is the IRF of the 5-year rate estimated in
the data, and π̂t is the IRF of inflation. We set g = 0.02 and iL = 0.043. We choose T = 60 quarters, when
the main macroeconomic variables, including government debt, are back to their pre-shock values.
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response of forwards rates to a 100 bps change in the two-year yield, while the dashed

line shows the corresponding response of forward rates in the model.27 A striking feature

of Hanson and Stein’s (2015) results was that monetary shocks affected forward rates in

the far distant future, a fact at odds with standard models. In contrast, Figure 3 shows

that our model is able to closely match their evidence.

The procedure above gives a value of 0.57 to ψλ, implying a half-life of roughly 4

months.28 The value of λ is 315, which implies a change of 33 bps in the probability

of disaster in response to a 25 bps monetary shock. Given that monetary shocks are typi-

cally small in the data, this implies a variability in the market-implied disaster probability

induced by monetary shocks that is only a small fraction of the overall volatility in the

disaster probability of 114 bps, as estimated by Wachter (2013).29

Figure 4 shows the response of the yield on the long-term bond and the contributions

of the path of future interest rates and of the term premium. The bulk of the reaction

of the yield reflects movements in the term premium, consistent with the findings of e.g.

Gertler and Karadi (2015). The model also captures the responses of asset prices that were

not directly targeted in the calibration. Consider first the corporate spread, the difference

between the yield on a corporate bond and the yield on a government bond (without risk

of default) with the same promised cash flow. This is consistent with the way the GZ

spread is computed in the data by Gilchrist and Zakrajšek (2012). Let e−ψFt denote the

coupon paid by the bond issued by the representative firm. We assume that the monetary

shock is too small to trigger a default, but corporate bonds default if a disaster occurs,

where lenders recover the fraction 1 − ζF of promised coupons. We calibrate ψF and ζF to

27 Appendix C contains the derivation of the partial differential equation (PDE) describing the evolution
of forward rates and the procedure we used to numerically solve it.

28This value of ψλ implies a lower persistence of iMPCs than the estimates of Fagereng et al. (2021), but
it is roughly in line with the recent findings of Borusyak et al. (2024).

29The value for λ is consistent with an annual disaster probability of less than 0.01% for optimistic
savers and 7% for pessimistic savers in our preferred interpretation. In Appendix C.3, we show how the
mapping between λ and the underlying belief heterogeneity changes under different assumptions.
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Figure 4: Asset-pricing response to monetary shocks.

match a duration of 6.5 years and a credit spread of 200 bps in the stationary equilibrium,

consistent with the estimates reported by Gilchrist and Zakrajšek (2012). Note that the

calibration targets the unconditional level of the credit spread. We evaluate the model on

its ability to generate an empirically plausible conditional response to monetary shocks.

Figure 4 shows that the corporate spread responds to monetary shocks by 11 bps. We

introduce the excess bond premium (EBP) in our VAR and find an increase in the EBP of

6.5 bps with a standard-error of 3.1 bps, roughly consistent with the model’s prediction.

Thus, the model produces quantitatively plausible movements in the corporate spread.

Another untargeted moment is the response of equity prices. The model generates a

decline in stocks of 4.0% in response to a 100 bps increase in interest rates, which coincides

with the point estimate of Bernanke and Kuttner (2005).30 Consistent with their findings,

the response of stocks is explained mostly by movements in the risk premium. Notice

the price-dividend ratio falls after a contractionary shock, despite a low EIS. In contrast,

Barro (2009) finds that the price-dividend ratio in the endowment disaster model with

separable utility increases with the probability of disaster when the EIS is less than one.

This motivates the adoption of a high EIS in an Epstein-Zin setting.31 Sticky prices is cru-

30We follow standard practice in the asset-pricing literature and report the response of a levered claim
on firms’ profits, using a debt-to-equity ratio of 0.5, as in Barro (2006).

31 For a similar reason, a high EIS is adopted in long-run risk models, see e.g. Bansal and Yaron (2004).
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Figure 5: Output in D-HANK.

Note: In both plots, the path of the nominal interest rate is given by it − rn = e−ψm t(i0 − rn), where i0 − rn equals 100 bps. The left
panel shows the solution with the estimated fiscal backing, while the right panel shows the MSV solution.

cial to avoid counterfactual movements in equity prices in our CRRA setting, as changes

in disaster probability would have the opposite effect on stock prices in the flexible-price

version of the model. Dividends are roughly acyclical. Due to the assumption of GHH

preferences, we avoid the strongly countercyclical profits typical of sticky-prices models.

4.3 Wealth effects in the monetary transmission mechanism

Figure 5 presents the response to a monetary shock of output and its components. The

left panel shows the solution when the fiscal backing matches the empirical estimates of

Section 4.1, while the right panel shows the conventional MSV solution. In the case with

the estimated fiscal backing, output drops on impact by 1.15% in response to an increase

of 100 bp in the nominal interest rate, roughly in line with the estimates by Miranda-

Agrippino and Ricco (2021). The time-varying precautionary motive (TVP) accounts for

60% of the initial output response, while the aggregate wealth effect (adjusted by the GE

factor) accounts for 30%. The ISE accounts for less than 10% of the initial output response,

indicating that intertemporal substitution plays only a minor role in our model.

We find stronger real effects with the MSV solution, where output drops by 1.66%
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Figure 6: Long-term bond yields and output for economies with and without risk.

on impact. The difference is entirely driven by the aggregate wealth effect, which now

explains more than the 50% of the overall effect, with the ISE and TVP being numerically

the same as in the case with the estimated fiscal backing. The stronger impact on output,

however, requires an increase in the present value of primary surpluses of more than 220

bps, which is more than twenty times bigger than what we estimate in the data.

4.4 The limitations of the homogeneous-beliefs model

The model delivers a substantial response of output, despite a relatively weak intertem-

poral substitution channel. But is this the result of introducing disaster risk or is it due to

heterogeneous beliefs? To answer this question, we consider the behavior of asset prices

and output in an economy with homogeneous beliefs (i.e. λ > 0 but λ = 0).

Figure 6 (left) shows that the yield on the long bond increases by only 12 bps, less than

half of the response estimated by the VAR in Section 4.1. Moreover, the term premium is

essentially zero. In this case, stocks would also be mostly driven by interest rates instead

of risk premia, inconsistent with the evidence in Bernanke and Kuttner (2005).

Figure 6 (right) shows the response of output for an economy with disaster risk and

homogeneous beliefs (solid line) and an economy without disaster risk (dashed line). In

both cases, we consider the solution that matches the estimated fiscal backing. In the

absence of belief heterogeneity, the impact on output of a monetary shock is substantially
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weaker, with a drop in output of roughly 0.35%. This is more than three times smaller than

the impact on output in the case with belief heterogeneity. Moreover, the solution with

disaster risk and homogeneous beliefs is almost identical to the one without disasters.

Introducing disaster risk allows the model to capture important unconditional asset-

pricing moments, such as the equity premium or an upward-sloping yield curve, but the

model is unable to match key conditional moments, such as the response of asset prices to

monetary policy, which affects how monetary policy impacts the real economy.

5 The Effect of Risk and Maturity of Household Debt

We have focused so far on how monetary policy affects the value of households’ assets,

such as stocks and bonds. However, movements in risk premia can also affect the real

economy through its impact on household debt. In this section, we extend the baseline

model to allow workers to borrow a positive amount using long-term risky debt.

5.1 The model with long-term risky household debt

Workers issue long-term debt that promises to pay exponentially decaying coupons given

by e−ψPt at period t ≥ 0, where ψP ≥ 0. In response to a large shock, i.e., the occurrence of

a disaster, workers default and lenders receive a fraction 1 − ζP of the promised coupons,

where 0 ≤ ζP ≤ 1. Fluctuations in the no-disaster state are small enough such that they

do not trigger a default. Thus, workers default only in the disaster state.

Workers can borrow up to DP,t = QP,tF, which effectively puts a limit on the face
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value of private debt F.32 The (log-linearized) consumption of workers is given by

cw,t = χyyt −


ψP

iP + ψP
(iP,t − iP)− πt


dP, (30)

where dP ≡ DP
Y denotes the debt-to-income ratio in the stationary equilibrium, and iP,t =

1
QP,t

− ψP is the yield on household debt. Equation (30) generalizes the expression for

workers’ consumption given in Section 2. When debt is short-term, ψP → ∞, and riskless,

ζP = 0, we obtain iP,t = it. With a consol, ψP = 0, households simply pay the coupon

every period and there is no need to issue new debt. Therefore, they are insulated from

movements in nominal rates. For intermediate values of maturity and risk, monetary

policy affects workers through changes in the nominal interest rate it and the spread rP,t.

Proposition 8 (Aggregate output with long-term risky household debt). Suppose that it −

rn = e−ψmt(i0 − rn) and rPσcs,t = O(||it − rn||2). Aggregate output is then given by

yt = σ̃−1ŷm,t

  
ISE

+ χλŷλ,t
  

time-varying
precautionary motive

+
µwdPψP

1 − µwχy


ψ̃mŷm,t

ρ + ψP + ψm
+

rPλψ̃λŷλ,t

ρ + ψP + ψλ



  
household-debt effect

+ (ρ − ω)eωtΩ0,
  

GE factor×
aggregate wealth effect

where ψ̃k = ψk + ρ − rn for k ∈ {m, λ}.

Proposition 8 extends the decomposition in Proposition 6 to the case of long-term

risky household debt. Household debt effectively amplifies the ISE and the time-varying

precautionary motive effect. If household debt is safe and short term (i.e, ζP = 0 and

ψP → ∞), then the household-debt effect loads only on ŷm,t, amplifying the ISE. When

debt is long-term or when households can default, then rP > 0 and the household-debt

effect also loads on ŷλ,t, amplifying the precautionary motive effect.

32This formulation guarantees that, after an increase in nominal rates, the value of household debt and
the borrowing limit decline by the same amount. This specification of the borrowing constraint, combined
with the assumption of impatient borrowers, guarantees that borrowers are constrained at all periods.
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5.2 Quantitative implications

We consider next the quantitative effects of introducing household debt. We calibrate

dP to match a debt service payment to disposable personal income of 10%. We choose

ψP to match a duration of 5 years, consistent with the mortgage duration estimated by

Greenwald, Leombroni, Lustig and Van Nieuwerburgh (2021) of 5.2 years. We choose ζP

to match a spread of 2% in a stationary equilibrium relative to the riskless bond with the

same promised coupons. Figure 7 shows the role of household debt in the transmission

of monetary policy to the economy. The top left panel shows the output decomposition

with the estimated fiscal backing. Output on impact drops by 1.6% in response to a 100 bp

increase in nominal rates, where the TVP channel accounts for roughly half of the overall

response and the aggregate wealth effect (adjusted by the GE factor) accounts for roughly

40%. The top right panel shows the decomposition for the MSV solution. In this case,

the drop in output is nearly 50 bp larger than the one with the estimated fiscal backing.

However, this requires a present value of primary surplus that is ten times larger than the

one we estimated.

The bottom left panel of Figure 7 shows the impact on output for a range of special

cases nested by our model. In all cases, we focus on the solution that matches the esti-

mated fiscal backing. The line denoted by RANK corresponds to the solution without

disaster risk and zero household debt, which aggregates to the textbook model. The line

denoted by HANK corresponds to the solution with positive debt, which given the het-

erogeneous MPCs between workers and savers captures an important channel of typical

HANK models. We also consider two versions of the model with heterogeneous beliefs

(D-HANK), with and without household debt. The output response in HANK is 12 bp

larger than in RANK. However, the impact on output in HANK is substantially smaller

than in either version of D-HANK. Introducing household debt in D-HANK raises the

impact on output by 48 bp. Hence, household debt interacts in important ways with
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Figure 7: The role of household debt: output decomposition and model comparison

disaster risk. The bottom right panel shows the impact on inflation. A similar pattern

emerges: we obtain a larger response of inflation under HANK than under RANK, but it

is substantially weaker than the inflation response under D-HANK.

5.3 The role of the EIS

We have seen that the real effects of monetary shocks are significantly weaker when we

shut down risk and heterogeneity. This appears to be in contrast with standard results

from the textbook model, which typically generates large real effects. Figure 8 shows that

the calibration of the EIS plays an important role for this result. The left panel shows the

MSV solution of the RANK model when we set σ = 1 and use the persistence of monetary

shocks from Galí (2015). Output drops by 1.1% in response to a 100 bp increase in nominal

rates, a substantial effect. The aggregate wealth effect, adjusted by the GE factor, accounts
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Figure 8: The role of the EIS in RANK’s quantitative performance.

for the majority of the output response. The middle panels shows the MSV solution of the

RANK model for σ = 4, as in our baseline calibration. We keep all the other parameters

fixed, including the slope of the Phillips curve κ. The response of output is now ten times

smaller. The right panel shows the solution that matches the estimated fiscal backing with

σ = 4, which is nearly the same as the MSV solution with σ = 4.

These results indicate that the quantitative performance of the standard RANK model

relies on a counterfactually strong intertemporal-substitution effect, which ends up being

amplified in general equilibrium by a large wealth effect. When the model is calibrated

to match the observed levels of public debt, this strong wealth effect requires an implied

fiscal backing that is too large relative to empirical estimates. This shows that the stan-

dard model lacks realistic mechanisms to generate large real effects of monetary policy.

Introducing heterogeneous MPCs and household debt improves the model performance,

but effects are still not large enough, in particular when debt is long term. We have seen

that risk and belief heterogeneity provide a powerful mechanism to generate the strong

real effects of monetary shocks observed in the data.
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6 Conclusion

In this paper, we provide a novel unified framework to analyze the role of risk and het-

erogeneity in a tractable New Keynesian model. The methods introduced in this paper

can be applied in other settings. For instance, they can be used to introduce time-varying

risk premia in a full quantitative HANK model with idiosyncratic risk. One could also

introduce a richer capital structure for firms and study the pass-through of monetary pol-

icy to households and firms. These methods may enable us to bridge the gap between the

existing work on heterogeneous agents and monetary policy and the emerging literature

on the role of asset prices in the transmission of monetary shocks.
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Appendix: Proofs

Proof of Proposition 1. To ensure that ηt correctly prices long-term bonds and equities, con-

sistent with equations (2) and (3), the market-implied disaster probability must satisfy the

condition λt


Cs,t
C∗

s,t

σ
= λj


Cj,t
C∗

j,t

σ

⇒ C∗
j,t =


λj
λt

 1
σ C∗

s,t
Cs,t

Cj,t. Plugging C∗
j,t into the definition

of savers’ average consumption in the disaster state, C∗
s,t ≡ µo

µo+µp
C∗

o,t +
µp

µo+µp
C∗

p,t, and

rearranging gives equation (4). By setting ρs,t ≡ ∑j∈{o,p}
µjCj,t

µoCo,t+µpCp,t
(ρj,t + λj) − λt, we

ensure that ηt correctly prices risk-free bonds, i.e., Et[dηt]/ηt = −(it − πt)dt.

Proof of Proposition 2. Consider the New Keynesian Phillips curve π̇t =


it − πt + λt
η∗

t
ηt


πt −


ϕA


W
P ewt−pt − (1 − −1)A


Yeyt . Linearizing the above expression, and using W

P = (1 −

−1)A, we obtain π̇t =


rn + λ


Cs
C∗

s

σ
πt − ϕ−1( − 1)Y(wt − pt). Using the fact that

wt − pt = φyt, we obtain π̇t = (ρs + λ)πt − κyt, where κ ≡ ϕ−1( − 1)φY and we used

that rn + λ


Cs
C∗

s

σ
= ρs + λ.

Consider next the generalized Euler equation. From the market-clearing condition for

goods and workers’ consumption, we obtain cs,t =
1−µwχy

1−µw
yt. Combining this condition

with the Phillips Curve and savers’ Euler equation, and using the fact that rn = ρ −

λ


Cs
C∗

s

σ
, we obtain ẏt = σ̃−1(it − π − rn) + δyt + χλλ̂t, where the constants σ̃−1, δ, and

χλ are defined in the proposition.

Proof of Proposition 3. The linearized Euler equation for saver j is given by ċj,t = σ−1(it −

πt − rn) +
λ
σ


Cs
C∗

s

σ 
λ̂t + σcs,t


− ξ(cj,t − cs,t). Taking the difference of the Euler equation

for the two types, we obtain ċp,t − ċo,t = −ξ(cp,t − co,t). Linearizing the savers’ flow

budget constraint, we obtain ḃp,t − ḃo,t = ∑k∈{L,E} rk


r̂k,t


Bk

p
Bp

− Bk
o

Bo
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Bo
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+ rn(bp,t − bo,t) where r̂k,t = λ̂t + σcs,t +

Q∗
k

Qk−Q∗
k
qk,t. The relative net worth

in the disaster state at t = t∗ is given by
B∗

p
Bp

b∗p,t∗ −
B∗

o
Bo

b∗o,t∗ = bp,t∗ − bo,t∗ −
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From the revaluation of net worth in the disaster state, shown above, we can solve

for the difference in portfolios
Bk

p
Bp

bk
p,t∗ −

Bk
o

Bo
bk

o,t∗ . From the optimality condition for risky

assets, we obtain cp,t − co,t = c∗p,t − c∗o,t. Savers’ consumption in the disaster state is

given by c∗j,t =
r∗nB∗

j
C∗

s
b∗j,t. Combining these expressions, we obtain the relative net worth

in the disaster state. We can then solve for the dynamics of relative net worth in the no-

disaster state: ḃp,t − ḃo,t = ρ(bp,t − bo,t) − χb,c(cp,t − co,t) + χb,cs cs,t, where χb,cs ≡ (σ −
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, where χb,c > 0. Assuming σrkcs = O(||it − rn||2), the term involving cs,t

can be ignored up to first order. We then obtain a dynamic system in cp,t − co,t and bp,t −

bo,t, which has a positive and a negative eigenvalue, so there is a unique bounded solution

given by cp,t − co,t =
ρ+ξ
χb,c

e−ψλt(bp,0 − bo,0) and bp,t − bo,t = e−ψλt(bp,0 − bo,0), where ψλ = ξ.

We can then write the market-implied disaster probability as λ̂t = e−ψλtχλ,c
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. The revaluation of the relative net worth is given

by bp,0 − bo,0 =


BL

p
Bp

− BL
o

Bo


qL,0, using the assumption that BE

o = BE
p . The price of the

long-term bond is given by qL,0 = − i0−rn
ρ+ψL+ψm

− rLλ̂0
ρ+ψL+ψλ

. Combining the expressions for

λ̂t, relative net worth, and bond prices, we obtain λ̂t = e−ψλtλ(i0 − r), where λ is given

by λ ≡


1 − χλ,c
ρ+ξ
χb,c


BL

o
Bo

− BL
p

Bp


rL

ρ+ψL+ψλ

−1 
χλ,c

ρ+ξ
χb,c


BL

o
Bo

− BL
p

Bp


1

ρ+ψL+ψm


.

Proof of Lemma ??. Linearizing the aggregate intertemporal budget constraint, we obtain

QCqc,0 = DGqL,0 + QEqE,0 + QHqH,0, where QH,t is the present discounted value of wages
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plus transfers. Using the pricing condition for qk,0, k ∈ {C, H, E}, we obtain

ˆ ∞

0
e−ρtctdt − QC

Y

ˆ ∞

0
e−ρt [it − πt − rn + rC pd,t] dt =

ˆ ∞

0
e−ρt


Π̂t +

WN
PY

(wt − pt + nt) + T̂t


dt

−QH + QE

Y

ˆ ∞

0
e−ρt [it − πt − rn] dt −


QH

Y
rH +

QE

Y
rE


ˆ ∞

0
e−ρt pd,tdt +

DG

Y
qL,0.

Using the fact that QC = DG + QE + QH and Q∗
C = DG

Q∗
L

QL
+ Q∗

E + Q∗
H, we obtain QC

Y −
QH+QE

Y = DG
Y ≡ dG and QC

Y rC − QHrH+QErE
Y = dGrL, given rk = λ


Cs
C∗

s

σ Qk−Q∗
k

Qk
. Combining

these expressions with the equation above, we obtain (??) after some rearrangement, and

using the fact that Π̂t +
WN
PY (wt − pt + nt) + T̂t = yt − (χτyt + τt).

Proof of Lemma 1. Consumption of a type-j saver satisfies
´ ∞

0 e−ρt(cj,t + χc∗j
c∗j,t) = Ωj,0,

ċj,t = ċs,t − ξ(cj,t − cs,t), and σ(cj,t − c∗j,t) = λ̂t + σ(cs,t − c∗s,t). Combining these conditions,

we obtain cj,t = cs,t +
(ρ+ξ)e−ξt

1+χλ
1
σ
j

(Ωj,0 − Ωs,0) +
χλ

1
σ
j

1+χλ
1
σ
j

λ̂t
σ and c∗j,t =

(ρ+ξ)e−ξt

1+χλ
1
σ
j

(Ωj,0 − Ωs,0)−

1

1+χλ
1
σ
j

λ̂t
σ , using χc∗j

= χλ
1
σ
j , where χ ≡ δ

r∗n
χ∗ and χ∗ ≡ λ− 1

σ
C∗

s
Cs

. From these expressions, we

obtain the iMPCs. From Mj,t +
δ
r∗n
M∗

j,t = (ρ + ξ)e−ξt, we obtain (24).

Proof of Proposition 5. Given cj,t = cs,t +
(ρ+ξ)e−ξt

1+χλ
1
σ
j

(Ωj,0 − Ωs,0) +
χλ

1
σ
j

1+χλ
1
σ
j

λ̂t
σ , the difference in

consumption at date t is given by cp,t − co,t = Mp,t(Ωp,0 − Ωs,0)−Mo,t(Ωo,0 − Ωs,0) +

M∗

p,0 −M∗
o,0


χ
χ∗

λ̂t
σ

1
ρ+ξ , as M∗

j,0 =
(ρ+ξ)χ∗λ

1
σ
j

1+χλ
1
σ
j

. Using Ωs,0 = µc,oΩo,0 + µc,pΩp,0, we can

write the expression above as follows: cp,t − co,t =

Mp,tµc,o +Mo,tµc,p


(Ωp,0 − Ωo,0) +

M∗
p,0 −M∗

o,0


χ
χ∗

λ̂t
σ

1
ρ+ξ . As λ̂t = χλ,c(cp,t − co,t), then cp,t − co,t =

(Mp,tµc,o+Mo,tµc,p)[Ωp,o−Ωo,0]
1−


M∗

p,0−M∗
o,0


χ

χ∗
χλ,c

σ(ρ+ξ)

.

Therefore, λ̂t is given by λ̂t =
χλ,ce−ξt(Mp,0µc,o+Mo,0µc,p)

1−

M∗

p,0−M∗
o,0


χ

χ∗
χλ,c

σ(ρ+ξ)


Ωp,o − Ωo,0


. We show next that

χλ,c is proportional to the differences in iMPCs. From the definition of λ̂t, we have χλ,c =

σµc,oµc,p


λ

1
σ
p −λ

1
σ
o



µc,oλ
1
σ
o +µc,pλ

1
σ
p

. Then, χλ,c = χ∗

χ

σµc,0µc,p


µo

µo+µp (1+χλ
1
σ
p )+

µp
µo+µp (1+χλ

1
σ
o )




µo

µo+µp M
∗
o,0+

µp
µo+µp M

∗
p,0



Mo,0 −Mp,0


, us-
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ing the expression for µc,j. This gives λ̂t = χλ


Mo,t −Mp,t

 
Ωp,0 − Ωo,0


, for a constant

χλ. Notice that χλ > 0 if and only if 1 −

M∗

p,0 −M∗
o,0


χ
χ∗

χλ,c
σ(ρ+ξ)

> 0. Using the expres-

sions for χλ,c, M∗
j,0, µc,j, and that λ

− 1
σ

o =
µo+µp

µo
λ− 1

σ − µp
µo

λ
− 1

σ
p , this is equivalent to showing

that the function F

λp, λ


≡ 1 − µp

µo+µp
χ


λ

1
σ
p

1+χλ
1
σ
p

− 1
µo+µp

µo λ− 1
σ − µp

µo λ
− 1

σ
p +χ


λ− 1

σ −λ
− 1

σ
p

λ− 1
σ

is pos-

itive for all λp ≥ λ and λ > 0. We have that F (λ, λ) = 1 and limλp→∞ F

λp, λ


=

1 − µp
µo+µp

1
1+χ

µo
µo+µp λ

1
σ

> 0. Moreover, it is immediate to see that, given λ , F

λp, λ


is

strictly decreasing in λp. Hence, χλ > 0 for all λp ≥ λ and λ > 0.

Proof of Propositions 6 and 7. We can write dynamic system in matrix form as Żt = AZt +

Bνt, where B = [1, 0]′. Applying the eigendecomposition to matrix A, we obtain A =

VΩV−1 where V =




ρ−ω

κ
ρ−ω

κ

1 1



, V−1 = κ
ω−ω



−1 ρ−ω
κ

1 − ρ−ω
κ



, and Ω =



ω 0

0 ω



. Decou-

pling the system, we obtain żt = Ωzt + bνt, where zt = V−1Zt and b = V−1B.

Solving the equation with a positive eigenvalue forward and the one with a negative

eigenvalue backward, and rotating the system back to the original coordinates, we obtain

yt = V12


V21y0 + V22π0


eωt − V11V11

ˆ ∞

t
e−ω(z−t)νzdz + V12V21

ˆ t

0
eω(t−z)νzdz

πt = V22


V21y0 + V22π0


eωt − V21V11

ˆ ∞

t
e−ω(z−t)νzdz + V22V21

ˆ t

0
eω(t−z)νzdz,

where Vi,j is the (i, j) entry of matrix V−1. Integrating e−ρtyt, we obtain Ω0 =

V12

V21y0 + V22π0

 1
ρ−ω − 1

ρ−ω V11V11 ´ ∞
0


e−ωt − e−ρt νtdt+ 1

ρ−ω V12V21 ´ ∞
0 e−ρtνtdt. Re-

arranging the above expression, we obtain V12

V21y0 + V22π0


= (ρ − ω)Ω0 +

ρ−ω
ρ−ω V11V11 ´ ∞

0 e−ωtνtdt, where we used the fact V11V11

ρ−ω + V12V21

ρ−ω = 0. Output is then given

by yt = ỹt + (ρ − ω)eωtΩ0, where ỹt = − ω−ρ
ω−ω

´ ∞
t e−ω(z−t)νzdz + ω−δ

ω−ω

´ t
0 eω(t−z)νzdz −

ρ−ω
ω−ω eωt ´ ∞

0 e−ωzνzdz. Inflation is given by πt = π̃t + κeωtΩ0, where π̃t =
κ

ω−ω

´ ∞
t e−ω(z−t)νzdz+

κ
ω−ω

´ t
0 eω(t−z)νzdz − κ

ω−ω eωt ´ ∞
0 e−ωzνzdz.
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If it − rn = e−ψmt(i0 − rn), then νt = σ̃−1e−ψmt(i0 − rn)+χpd λe−ψλt(i0 − rn). Then, ỹt =

σ̃−1ŷm,t +χλŷλ,t and π̃t = σ̃−1π̂m,t +χλπ̂λ,t, where χλ ≡ χpd λ, ŷk,t =
(ρ−ω)eωt−(ρ+ψk)e

−ψkt

(ψk+ω)(ψk+ω)
(i0 −

rn), and π̂k,t =
κ(eωt−e−ψkt)

(ω+ψk)(ω+ψk)
(i0 − rn). Note that

´ ∞
0 e−ρtŷk,tdt = 0, ∂ŷk,0

∂i0
= − 1

ψk+ω < 0, and

limt→∞ ŷk,t = 0. Moreover, π̂0 = 0, ∂π̂k,t
∂i0

≥ 0 with strict inequality if t > 0.

Proof of Proposition 8. The workers’ financial wealth in the no-disaster state evolves ac-

cording to Ḃw,t = (it − πt + rP,t)Bw,t + WtNw,t + Tw,t − Cw,t. Using the fact that Bw,t =

−QP,tF and qP,t = − iP,t−iP
iP+ψP

, we obtain equation (30). From the market clearing condition

for goods, we obtain savers’ consumption: cs,t =
1−µwχy

1−µw
yt +

µwdP
1−µw


ψP

iP+ψP
(iP,t − iP)− πt


.

Assuming exponentially decaying interest rates, and using the yield on the private bond

iP,t − iP = iP+ψP
ρ+ψP+ψm

(it − rn) +
iP+ψP

ρ+ψP+ψλ
rPλ̂t, we can write savers’ consumption as follows

cs,t =
1 − µwχy

1 − µw
yt +

µwdP

1 − µw


ψP

ρ + ψP + ψm
(it − rn) +

ψPrP

ρ + ψP + ψλ
λ̂t − πt


. (31)

The Euler equation for savers can be written as

ċs,t = σ−1(it − πt − rn) + λ


Cs

C∗
s

σ 
cs,t + σ−1λ̂t


. (32)

Combining equations (31) and (32), we obtain

ẏt =


σ̃−1 − µwdP

1 − µwχy
rn


(it − πt − rn) +


λ


Cs

C∗
s

σ

− µwdP

1 − µwχy
κ


yt

+


χpd +

µwdP

1 − µwχy

ψPrP(ρ − rn + ψλ)

ρ + ψP + ψλ


λ̂t +

µwdP

1 − µwχy


rn +

ψP(ρ − rn + ψm)

ρ + ψP + ψm


(it − rn).

The aggregate Euler equation is given by ẏt = −σ̂−1πt + δ̂yt + v̂t, where σ̂−1 ≡ σ̃−1 −
µwdPrn
1−µwχy

, δ̂ ≡ λ


Cs
C∗

s

σ
− µwdPκ

1−µwχy
, and v̂t ≡


χpd +

µwdP
1−µwχy

ψPrPψ̃λ
ρ+ψP+ψλ


λ̂t +


σ̃−1 + µwdP

1−µwχy

ψPψ̂m
ρ+ψP+ψm


(it −

rn), where ψ̃k ≡ ψk + ρ− rn for k ∈ {m, λ}. Therefore, following a derivation analogous to
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the one in Proposition 6, output is given by yt = σ̃−1ŷm,t +χλŷλ,t +
µwdP

1−µwχy


ψPψ̃m ŷm,t

ρ+ψP+ψm
+

rPλψ̃λ ŷλ,t
ρ+ψP+ψλ


+

(ρ − ω)eωtΩ0, where the eigenvalues are given by ω =
ρ+δ̂+

√
(ρ+δ̂)2+4(σ̂−1κ−ρδ̂)

2 and ω =

ρ+δ̂−
√

(ρ+δ̂)2+4(σ̂−1κ−ρδ̂)
2 .
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Internet Appendix

A Derivations for Section 2

A.1 The non-linear model

Savers’ problem. The HJB for the savers’ problem is given by

ρj,tVj,t = max
Cj,t,BL

j,t,B
E
j,t

C1−σ
j,t

1 − σ
+

∂Vj,t

∂t
+ λj


V∗

j,t − Vj,t


+

∂Vj,t

∂Bj,t


(it − πt)Bj,t + rL,tBL

j,t + rE,tBE
j,t + Tj,t − Cj,t


.

(A.1)

where V∗
j,t is evaluated at B∗

j,t = Bj,t + BL
j,t

Q∗
L,t−QL,t

QL,t
+ BE

j,t
Q∗

E,t−QE,t
QE,t

and Bj,t > 0.

The corresponding HJB in the disaster state is given by

ρ∗j,tV
∗
j,t = max

C∗
j,t,B

L,∗
j,t ,BE,∗

j,t

(C∗
j,t)

1−σ

1 − σ
+

∂V∗
j,t

∂t
+

∂V∗
j,t

∂B∗
j,t


(i∗t − π∗

t )Bj,t + T∗
j,t − C∗

j,t


,

where we imposed that r∗L,t = r∗E,t = 0, as there is no risk in the disaster state.

The first-order conditions are given by1

C−σ
j,t =

∂Vj,t

∂Bj,t
,

∂Vj,t

∂Bj,t
rk,t =

∂V∗
j,t

∂B∗
j,t

Qk,t − Q∗
k,t

Qk,t
, (C∗

j,t)
−σ =

∂V∗
j,t

∂B∗
j,t

, (A.2)

for k ∈ {L, E}. Savers are indifferent about their portfolio composition in the disaster

state. From the expressions above, we obtain eqn. (2) and (3). Differentiating the HJB

1Formally, the solution is also subject to a state-constraint boundary condition . See ? for a discussion
of such constraints in continuous-time savings problems.
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equation in the no-disaster state with respect to Bj,t, we obtain the envelope condition:2

ρj,t
∂Vj,t

∂Bj,t
=

∂Vj,t

∂Bj,t
(it − πt) +

Ej,t[d


∂Vj,t
∂Bj,t


]

dt
. (A.3)

Using the optimality condition for consumption and the condition above, we obtain:

it − πt − ρj,t = −
Et[dC−σ

j,t ]

C−σ
j,t dt

=
σC−σ−1

j,t Ċj,t − λj


(C∗

j,t)
−σ − C−σ

j,t



C−σ
j,t

, (A.4)

using the fact that dCj,t = Ċj,tdt + [C∗
j,t − Cj,t]dNt and Ito’s lemma. Rearranging the ex-

pression above, we obtain eqn. (1). A similar envelope condition holds in the disaster

state, which gives the Euler equation for the disaster state

Ċ∗
j,t

C∗
j,t

= σ−1(it − πt − ρ∗j,t). (A.5)

The relative net worth of optimistic and pessimistic savers evolves according to

Ḃo,t

Bo,t
−

Ḃp,t

Bp,t
= ∑

k∈{L,E}
rk,t


BL

o,t

Bo,t
−

Bk
p,t

Bp,t


−


Co,t − Ts,t

Bo,t
−

Cp,t − Ts,t

Bp,t


. (A.6)

Workers’ problem. The HJB for the workers’ problem is given by

ρwVw,t = max
C̃w,t,Nw,t,BL

w,t

C̃1−σ
w,t

1 − σ
+

∂Vw,t

∂Bw,t


(it − πt)Bw,t + rL,tBL

w,t +
Wt

Pt
Nw,t + Tw,t − C̃w,t −

N1+φ
w,t

1 + φ


.

+
∂Vw,t

∂t
+ λw


V∗

w,t − Vw,t


(A.7)

2Here we used the fact that Ej,t[dF(Bj,t, t)] =


Ft + λj[F∗ − F] + FB


(i − π)Bj + rLBL

j + rEBE
j − Cj


dt

for any function F(Bj,t, t), according to Ito’s lemma.
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subject to the state-constraint boundary condition

∂Vw,t(0)
∂Bw,t

≥


Wt

Pt
Nw,t −

N1+φ
w,t

1 + φ
+ Tw,t

−σ

, (A.8)

where we adopted the change of variables C̃w,t ≡ Cw,t −
N1+φ

w,t
1+φ .

For simplicity, we have already imposed that BE
w,t = 0. We show below that BL

w,t = 0

and a similar argument shows that workers would be against the short-selling constraint

for equities when BE
w,t is a choice variable.

The optimality condition for labor supply is given by

Nφ
w,t =

Wt

Pt
. (A.9)

We focus on an equilibrium where workers are always constrained. To derive the con-

ditions that ensure this is indeed the case, we start by considering a stationary equilibrium

where all variables are constant conditional on the state. If workers are constrained in the

stationary equilibrium, then they will also be constrained if fluctuations are small enough.

In a stationary equilibrium, net consumption C̃w in the no-disaster state is given by

C̃w =
W
P

Nw − N1+φ
w

1 + φ
+ Tw, (A.10)

and an analogous expression holds in the disaster state. Notice that the expression above

does not depend on ρw or λw.

For workers to be unconstrained, the following condition would have to hold:

˙̃Cw,t

C̃w,t
= σ−1(rn − ρw) +

λw

σ


C̃w,t

C̃∗
w,t

σ

− 1


. (A.11)

For ρw sufficiently large, workers would want a declining path of consumption, so cur-
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rent consumption would be above W
P Nw − N1+φ

w
1+φ + Tw, which would violate the state-

constraint. Hence, the constraint must be binding for ρw sufficiently large.

If the workers hold a positive amount of the long-term bonds, then the following con-

dition must hold

rL = λw


C̃w

C̃∗
w

σ QL − Q∗
L

QL
. (A.12)

As Cw and C∗
w are independent of λw, the equation above would hold only if λw equals

the value λw ≡ rL
Cw
C∗w

σ QL−Q∗
L

QL

. For λw > λw, borrowers would want a smaller dispersion

between Cw and C∗
w, which requires holding less risky bonds, violating the non-negativity

constraint on long-term bonds. Therefore, borrowers will hold zero long-term bonds for

λw sufficiently large.

Firms’ problem. The intermediate-goods producers’ problem is given by

Qi,t(Pi) = max
[πi,s]s≥t

Et


ˆ t∗

t

ηs

ηt


Pi,s

Ps
Yi,s −

Ws

Ps

Yi,s

As
− ϕ

2
π2

s (j)


ds +
ηt∗

ηt
Q∗

i,t∗(Pi,t∗)


,

subject to Yi,t =


Pi,t
Pt

−
Yt and Ṗi,t = πi,tPi,t, given Pi,t = Pi.

The HJB equation for this problem is

0 = max
πi,t

ηt


Pi,t

Pt
Yi,t −

Wt

Pt

Yi,t

A
− ϕ

2
π2

i,t


dt + Et[d(ηtQi,t)], (A.13)

where Et[d(ηtQi,t)]
ηtdt = −(it − πt)Qi,t +

∂Qi,t
∂Pi,t

πi,tPi,t +
∂Qi,t

∂t + λt
η∗

t
ηt


Q∗

i,t − Qi,t


.

The first-order condition is given by

∂Qi,t

∂Pi
Pi,t = ϕπi,t.
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The change in πt conditional on no disaster is then given by


∂2Qi,t

∂t∂Pi
+

∂2Qi,t

∂P2
i

πi,tPi,t


Pi,t +

∂Qi,t

∂Pi
πi,tPi,t = ϕπ̇i,t. (A.14)

The envelope condition with respect to Pi,t is given by

0 =


(1 − )

Pi,t

Pt
+ 

Wt

Pt A


Pi,t

Pt

− Yt

Pi,t
+

∂2Qi,t

∂t∂Pi
+

∂2Qi,t

∂P2
i

πi,tPi,t+

∂Qi,t

∂Pi
πi,t − (it − πt)

∂Qi,t

∂Pi
+ λt

η∗
t

ηt


∂Q∗

i,t

∂Pi
− ∂Qi,t

∂Pi


. (A.15)

Multiplying the expression above by Pi,t and using eqn. (A.14), we obtain

0 =


(1 − )

Pi,t

Pt
+ 

Wt

Pt A


Pi,t

Pt

−

Yt + ϕπ̇t − (it − πt)ϕπi,t + λt ϕ
η∗

t
ηt


π∗

i,t − πi,t


.

Rearranging the expression above, we obtain the non-linear New Keynesian Phillips

curve

π̇t =


it − πt + λt

η∗
t

ηt


πt −

ϕ−1

A


Wt

Pt
− (1 − −1)A


Yt,

where we have assumed that Pi,t = Pt for all i ∈ [0, 1] and that π∗
t = 0.

A.2 The stationary equilibrium

Aggregate output. Consider a stationary equilibrium with zero inflation. From the New

Keynesian Phillips curve, we obtain

W
P

= (1 − −1)A,
W∗

P
= (1 − −1)A∗. (A.16)
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Combining the expressions above with the labor supply condition, we obtain

Y = µw(1 − −1)
1
φ A

1+φ
φ , Y∗ = µw(1 − −1)

1
φ (A∗)

1+φ
φ . (A.17)

Disaster state. From the Euler equation for short-term bonds, an allocation with con-

stant consumption must satisfy r∗n = ρ∗j . Uzawa preferences implies that this condition is

eventually satisfied. For simplicity, we assume that ρ∗j (·) is constant and ρ∗o = ρ∗p. This

is assumption is not necessary for our results, but it simplifies presentation, as it ensures

that allocations are constant as the economy switches to the disaster state. We set ρ∗j = ρs,

so there is no jump in the discount rate of the representative saver. In this case, the real

interest rate in the disaster state is given by i∗t − π∗
t = r∗n = ρs.

The excess return on long-terms bonds and equity are equal to zero, r∗L = r∗E = 0, so

the price of the long-term bond is given by

Q∗
L =

1
r∗n + ψL

, (A.18)

and the equity price is given by Q∗
E = Π∗

r∗n
.

The consumption of borrowers is given by

C∗
w = (1 − −1)

Y∗

µw
+ T∗

w. (A.19)

We assume that the government chooses fiscal transfers so workers have a given

share 0 < µY,w < 1 of output, so C∗
w = µY,w

Y∗
µw

. The parameter µY,w captures the gov-

ernment’s preference for redistribution. This requires that the government sets T∗
w =


µY,w
µw

− 1−−1

µw


Y∗. In the main text, we focus on the case µY,w = µw.

Savers’ consumption is given by

C∗
j = r∗nB∗

j + T∗
j , (A.20)
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where B∗
j = Bj + BL

j
Q∗

L−QL
QL

+ BE
j

Q∗
E−QE
QE

.

Aggregate consumption of savers is given by

C∗
s = r∗n

D∗
G

µs
+

Π∗

µs
+ Ts. (A.21)

Transfers to savers must satisfy Ts = (1 − µY,w − −1)Y∗
µs

− r∗n
D∗

G
µs

such that the govern-

ment’s budget constraint is satisfied. This implies that the aggregate consumption of

savers is given by C∗
s = (1 − µY,w)

Y∗
µs

.

We focus on a symmetric allocation in the disaster state, so we assume that T∗
o,t − T∗

p,t =

−r∗n(B∗
o − B∗

p), for t ≥ t∗. This implies that C∗
j = C∗

s .

No-disaster state. The consumption of workers is given by

Cw =

(1 − −1)A

 1+φ
φ

+ Tw. (A.22)

As in the disaster state, the government chooses fiscal transfers so workers have a

given share 0 < µY,w < 1 of output, so Cw = µY,w
Y

µw
and Cs = (1 − µY,w)

Y
µs

. This requires

that the government sets Tw =


µY,w
µw

− 1−−1

µw


Y.

From the market clearing condition for assets, we obtain

Bs =
DG + QE

1 − µw
, BL

s =
DG

1 − µw
, BE

s =
QE

1 − µw
. (A.23)

The consumption of individual savers is given by

Cj = rnBj + rLBL
j + rEBE

j − Tj (A.24)

From the Euler equation for short-term bonds to be satisfied for both types of savers,

the following condition must be satisfied: ρo − ρp = λp − λo, where ρj is an increasing
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function of
Cj
Cs

. As the consumption of type-j savers is increasing in Bj, ρo − ρp is increasing

in Bo. Hence, there is a unique value of Bo such that ρo − ρp = λp − λo. We assume the

function ρj(·) is such that this equality is achieved when Bo = Bp.

Using the fact that Bo = Bp and To = Tp in a stationary equilibrium, we can write the

consumption of optimistic and pessimistic savers as follows:

Co = Cs + rL
µp

µo + µp
(BL

o − BL
p) + rE

µp

µo + µp
(BE

o − BE
p ) (A.25)

Cp = Cs − rL
µo

µo + µp
(BL

o − BL
p)− rE

µo

µo + µp
(BE

o − BE
p ). (A.26)

We can use the Euler equations for risky assets to eliminate rL and rE from the expres-

sions above, which gives us

Co = Cs


1 + λ


Cs

C∗
s

σ µp

µo + µp
Ro


, C∗

o = C∗
s , (A.27)

Cp = Cs


1 − λ


Cs

C∗
s

σ µo

µo + µp
Ro


, C∗

p = C∗
s , (A.28)

where Ro ≡ QL−Q∗
L

QL

BL
o −BL

p
Cs

+
QE−Q∗

E
QE

BE
o −BE

p
Cs

represents optimistic relative risk exposure.

From the optimality condition for risky assets, we obtain


1 + λ


Cs

C∗
s

σ µp

µo + µp
Ro

σ

=
λp

λo


1 − λ


Cs

C∗
s

σ µo

µo + µp
Ro

σ

. (A.29)

Rearranging the expression above, we obtain

λ


Cs

C∗
s

σ

R0 =
λ

1
σ
p − λ

1
σ
o

µo
µo+µp

λ
1
σ
p +

µp
µo+µp

λ
1
σ
o

, (A.30)

which is positive if λp > λo. The value of Ro pins down only a linear combination of

BL
o − BL

p and BE
o − BE

o . For concreteness, we assume that BE
o = BE

p , so savers have different

8



exposure to bonds in equilibrium.

Given Ro, we can solve for the share of consumption of optimistic savers:

µoCo

µoCo + µpCp
=

µo

µo + µp



1 +
µp(λ

− 1
σ

o − λ
− 1

σ
p )

µoλ
− 1

σ
o + µpλ

− 1
σ

p



 . (A.31)

Given the expression above, we obtain the market-implied disaster probability:

λ =


µoCo

µpCp + µpCp
λ

1
σ
o +

µpCp

µpCp + µpCp
λ

1
σ
p

σ

⇒ λ =



 µoλ
− 1

σ
o

µo + µp
+

µpλ
− 1

σ
p

µo + µp




−σ

. (A.32)

From the Euler equations for short-term and long-term bonds, we obtain

rn = ρj − λj


Cj

C∗
j

σ

− 1


, rk = λj


Cj

C∗
j

σ
Qk − Q∗

k
Qk

, (A.33)

for k ∈ {L, E}, where rL = 1
QL

− ψL − rn, rE = Π
QE

− rn, and Π = −1Y.

Using the fact that λ


Cs
C∗

s

σ
= λj


Cj
C∗

j

σ

, we can write the Euler equations in terms of

aggregate savers’ consumption:

rn = ρs − λ


Cs

C∗
s

σ

− 1


, rk = λ


Cs

C∗
s

σ Qk − Q∗
k

Qk
, (A.34)

for k ∈ {L, E}, where ρs satisfy the condition ρs + λ = ρj + λj for j ∈ {o, p}.

We solve next for the price of risky assets. Given rL, we can solve for QL:

1
QL

− ψL − rn = λ


Cs

C∗
s

σ 
1 − Q∗

L
QL


⇒ QL = Q∗

L

r∗n + ψL + λ


Cs
C∗

s

σ

rn + ψL + λ


Cs
C∗

s

σ , (A.35)

where QL > Q∗
L, as rn < r∗n due to the precautionary motive in the no-disaster state.
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The loss in long-term bonds in the disaster state is given by

QL − Q∗
L

QL
=

r∗n − rn

r∗n + ψL + λ


Cs
C∗

s

σ , (A.36)

which is positive as r∗n > rn. Long-term interest rates are higher than short-term interest

rates in the stationary equilibrium, i.e., the yield curve is upward sloping in this economy.

The equity price is given by

Π
QE

− rn = λ


Cs

C∗
s

σ 
1 − Q∗

E
QE


⇒ QE =

Π + λ


Cs
C∗

s

σ
Q∗

E

rn + λ


Cs
C∗

s

σ , (A.37)

so the loss on equity in the disaster state is given by

QE − Q∗
E

QE
=

Π − rnQ∗
E

Π + λ


Cs
C∗

s

σ
Q∗

E

=
ρsζΠ + λ


Cs
C∗

s

σ
− 1


(1 − ζΠ)

ρs + λ


Cs
C∗

s

σ
(1 − ζΠ)

, (A.38)

where ζΠ ≡ 1 − Π∗
Π is the size of the drop in profits. As the expression above is positive,

the equity premium is positive in the stationary equilibrium.

A.3 Log-linear approximation

We consider next the effects of an unexpected monetary shock for an economy starting at

the stationary equilibrium described above.

Disaster state. As there is no monetary shock in the disaster state, inflation is equal

to zero, π∗
t = 0, and output is kept at the stationary-equilibrium level, y∗t = 0. Wages

and hours are unchanged, so c∗w,t = 0. Savers’ aggregate consumption is also the same

as in the stationary equilibrium, c∗s,t = 0. Savers’ flow budget constraint is given by

10



µsC∗
s,t = r∗n,t(DG,t

Q∗
L,t

QL,t
+ Q∗

E,t) + T∗
s,t. Notice that r∗n,t = r∗n, Q∗

L,t = Q∗
L, and Q∗

E,t = Q∗
E. For

simplicity, we further assume that the government chooses transfers in the no-disaster

state such that DG,t = DGqL,t, so transfers must satisfy T∗
s,t = T∗

s . Consumption of type-j

saver is then given by
C∗

j
B∗

j
c∗j,t = r∗nb∗j,t.

Market-based disaster probability. Linearizing eqn. (4) around the stationary equilib-

rium, we obtain
λ

1
σ

σ
λ̂t = µc,oµc,p


λ

1
σ
p − λ

1
σ
o

 
cp,t − co,t


, (A.39)

where µc,j ≡
µjCj

µoCo+µpCp
and cj,t ≡ log Cj,t/Cj, for j ∈ {o, p}.

Euler equation for short-term bonds. Using the fact that λj


Cj,t
C∗

j,t

σ

= λt


Cs,t
C∗

s,t

σ
, we

can write the Euler equation for short-term bonds as follows

ċj,t = σ−1 it − πt − (ρj,t + λj)

+

λt

σ


Cs,t

C∗
s,t

σ

. (A.40)

Linearizing the discount-rate function, we obtain ρj,t = ρj + σξ(cj,t − cs,t), where we

assumed a common slope for both types σξ, so we obtain the linearized Euler equation

ċj,t = σ−1(it − πt − rn) +
λ

σ


Cs

C∗
s

σ 
λ̂t + σcs,t


− ξ(cj,t − cs,t). (A.41)

Aggregating the expression above, and using cs,t = ∑j∈{o,p} µc,jcj,t, we obtain

ċs,t = σ−1(it − πt − rn) +
λ

σ


Cs

C∗
s

σ 
λ̂t + σcs,t


. (A.42)
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Relative consumption. From the optimality condition for risky assets, we obtain

λ
1
σ
o

Co,t

C∗
o,t

= λ
1
σ
p

Cp,t

C∗
p,t

⇒ cp,t − co,t = c∗p,t − c∗o,t (A.43)

Relative consumption in the no-disaster evolves according to

ċp,t − ċo,t = −ξ(cp,t − co,t). (A.44)

Relative net worth. Linearizing eqn. (A.6), we obtain

ḃp,t − ḃo,t = ∑
k∈{L,E}

rk


r̂k,t


bk

p

bp
− bk

o
bo


+

bk
p

bp
(bk

p,t − bp,t)−
Bk

o
Bo

(bk
o,t − bo,t)



−


Cp

Bp
cp,t −

Co

Bo
co,t


+

Cp − Tp

Bp
bp,t −

Co − To

Bo
bo,t, (A.45)

where r̂k,t = λ̂t + σcs,t +
Q∗

k
Qk−Q∗

k
qk,t. Using the fact that

Cj−Tj
Bj

= rn + ∑k∈{L,E} rk
Bk

j
Bj

, we can

write the expression above as follows

ḃp,t − ḃo,t = ∑
k∈{L,E}

rk


r̂k,t


Bk

p

Bp
− Bk

o
Bo


+

Bk
p

Bp
bk

p,t −
Bk

o
Bo

bk
o,t


−


Cp

Bp
cp,t −

Co

Bo
co,t



+ rn(bp,t − bo,t). (A.46)

The relative net worth in the disaster state at t = t∗ is given by

B∗
p

Bp
b∗p,t∗ −

B∗
o

Bo
b∗o,t∗ = bp,t∗ − bo,t∗ − ∑

k∈{L,E}


Bk

p

Bp
− Bk

o
Bo


Q∗

k
Qk

qk,t∗ +
Qk − Q∗

k
Qk


Bk

p

Bp
bk

p,t∗ −
Bk

o
Bo

bk
o,t∗


.

(A.47)

Relative risk exposure. Consumption of savers in the disaster state is given by c∗j,t =
r∗nB∗

j
C∗

s
b∗j,t, so we obtain that c∗p,t − c∗o,t =

r∗n
C∗

s
(B∗

pb∗p,t − B∗
o b∗o,t). Using this expression and the
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fact that c∗p,t − c∗o,t = cp,t − co,t, we can solve for the relative risk exposure:

∑
k∈{L,E}

Qk − Q∗
k

Qk


Bk

p

Bp
bk

p,t −
Bk

o
Bo

bk
o,t


= bp,t − bo,t −

C∗
s

r∗nBs
(cp,t − co,t)− ∑

k∈{L,E}


Bk

p

Bp
− Bk

o
Bo


Q∗

k
Qk

qk,t.

(A.48)

The dynamic system. Using the expression above to eliminate the relative risk expo-

sure, the relative net worth at the no-disaster state is given by

ḃp,t − ḃo,t = (λ̂t + (σ − 1)cs,t) ∑
k∈{L,E}

rk


Bk

p

Bp
− Bk

o
Bo


+ ρ(bp,t − bo,t)

−


rn +
Ts

Bs
+

C∗
s (ρ − rn)

r∗nBs


(cp,t − co,t)− ∑

k∈{L,E}
rk


Bk

p

Bp
(cp,t − cs,t)−

Bk
o

Bo
(co,t − cs,t)


, (A.49)

using r̂k,t = λ̂t + σcs,t +
Q∗

k
Qk−Q∗

k
qk,t,

Cj
Bj

= rn +
Tj
Bj
+ ∑k∈{L,E} rk

Bk
j

Bj
, and λ


Cs
C∗

s

σ
= ρ − rn.

The deviation of consumption from average can be written as

cp,t − cs,t = µc,o(cp,t − co,t), co,t − cs,t = −µc,p(cp,t − co,t). (A.50)

Combining the expressions above, we can write ḃp,t − ḃo,t as follows

ḃp,t − ḃo,t = ρ(bp,t − bo,t)− χb,c(cp,t − co,t) + χb,cs cs,t, (A.51)

where χb,cs ≡ (σ − 1)∑k∈{L,E} rk


Bk

p
Bp

− Bk
o

Bo


, and

χb,c ≡ σµc,oµc,p



λ
1
σ
p − λ

1
σ
o

λ
1
σ



 ∑
k∈{L,E}

rk


Bk

o
Bo

−
Bk

p

Bp


+


rn +

Ts

Bs
+

C∗
s (ρ − rn)

r∗nBs


(A.52)

+ ∑
k∈{L,E}

rk


µc,o

Bk
p

Bp
+ µc,p

Bk
o

Bo


.
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Note that rn +
Ts
Bs

=
Cj
Bj
−∑k∈{L,E} rk

Bk
j

Bj
, so rn +

Ts
Bs

= µc,p
Co
Bo
+µc,o

Cp
Bp

−∑k∈{L,E} rk


µc,p

Bk
o

Bo
+ µc,o

Bk
p

Bp


.

We can then write χb,c as follows:

χb,c = σµc,oµc,p



λ
1
σ
p − λ

1
σ
o

λ
1
σ



 ∑
k∈{L,E}

rk


Bk

o
Bo

−
Bk

p

Bp


+ µc,p

Co

Bo
+ µc,o

Cp

Bp
+

C∗
s (ρ − rn)

r∗nBs
,

(A.53)

so χb,c > 0, as rn < ρ.

In general, we would have to simultaneously solve for the aggregate variables and the

relative net worth and relative consumption of pessimistic savers, which would increase

the dimensionality of the problem relative to the standard New Keynesian. We assume

that rkcs,t = O(||it − rn||2), so this term is small and can be ignored in our approximate

solution. This implies that the system is now block recursive, where we can solve for the

dynamics of relative consumption and relative net worth before fully characterizing the

behavior of other aggregate variables. Under this assumption, we can write the joint

dynamics of bp,t − bo,t and cp,t − co,t as follows:



 ċp,t − ċo,t

ḃp,t − ḃo,t



 =



 −ξ 0

−χb,c ρ







cp,t − co,t

bp,t − bo,t



 . (A.54)

Persistence of λ̂t. The system above has a positive and a negative eigenvalue, so there

is a unique bounded solution given by



cp,t − co,t

bp,t − bo,t



 =




ρ+ξ
χb,c

1



 e−ψλt(bp,0 − bo,0) (A.55)

where ψλ = ξ.
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We can then write the market-implied disaster probability as follows:

λ̂t = e−ψλtλ̂0, (A.56)

where

λ̂0 ≡ σµc,oµc,p



λ
1
σ
p − λ

1
σ
o

λ
1
σ



 ρ + ξ

χb,c
(bp,0 − bo,0). (A.57)

Hence, ψλ captures the persistence of λ̂t. If ξ = 0, then ψλ = 0 and changes in λt

are permanent. For high values of ψλ, the effects on λt are transitory and ψλ controls the

speed of the convergence.

Wealth revaluation and λ̂0. The revaluation of the relative net worth is given by

bp,0 − bo,0 = ∑
k∈{L,E}


Bk

p

Bp
− Bk

o
Bo


qk,0. (A.58)

The price of the long-term bond satisfies the condition

− 1
QL

qL,t + q̇L,t − (it − rn) = rL


λ̂t + σcs,t +

Q∗
L

QL − Q∗
L

qL,t


(A.59)

Rearranging the expression above, we obtain

q̇L,t − (ρ + ψL)qL,t = (it − rn) + rL(λ̂t + σcs,t). (A.60)

Solving the differential equation above, we obtain

qL,0 = −
ˆ ∞

0
e−(ρ+ψL)t(it − rn)dt −

ˆ ∞

0
e−(ρ+ψL)trL(λ̂t + σcs,t)dt. (A.61)
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Suppose it − rn = e−ψmt(i0 − rn) and rLσcs,t = O(||it − rn||2), then

qL,0 = − i0 − rn

ρ + ψL + ψm
− rLλ̂0

ρ + ψL + ψλ
. (A.62)

We focus on the case
BE

p
Bp

= BE
o

Bo
, so the initial relative wealth revaluation is given by

bp,0 − bo,0 = −


BL
p

Bp
− BL

o
Bo


i0 − rn

ρ + ψL + ψm
+

rLλ̂0

ρ + ψL + ψλ


. (A.63)

Plugging the expression above into the expression for λ̂0

λ̂0 ≡
σµc,oµc,p


λ

1
σ
p −λ

1
σ
o

λ
1
σ


ρ+ξ
χb,c


BL

o
Bo

− BL
p

Bp



1 − σµc,oµc,p


λ

1
σ
p −λ

1
σ
o

λ
1
σ


ρ+ξ
χb,c


BL

o
Bo

− BL
p

Bp


rL

ρ+ψL+ψλ

i0 − rn

ρ + ψL + ψm
. (A.64)

Notice that there is an amplification mechanism between the price of the long-term

bond and the change in disaster probability. A wealth redistribution towards pessimistic

investors tends to increase λ̂0. An increase in λ̂0 depresses the value of long-term bonds,

redistributing towards pessimistic investors, further increasing λ̂t.

Workers’ consumption. Log-linearizing workers’ budget constraint, we obtain

cw,t =
WNw

PCw
(wt − pt + nw,t) +

Y
Cw

T′
w(Y)yt. (A.65)

Using the fact that wt − pt + nw,t = (1 + φ)yt, we can write the expression above as

follows

cw,t = χyyt. (A.66)

where χy ≡ WNw
PCw

(1 + φ) + Y
Cw

T′
w(Y).
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Phillips curve. Linearizing the Phillips curve, we obtain

π̇t = ρπt − κyt, (A.67)

where κ ≡ φ
ϕ

WN
P .

Stock prices. Linearizing the expression for rE,t, we obtain

Π
QE

(Π̂t − qE,t) + q̇E,t − (it − πt − rn) = rE


λ̂t + σcs,t +

Q∗
E

QE − Q∗
E

qE,t


. (A.68)

Rearranging the expression above, we obtain

q̇E,t − ρqE,t = − 1
QE

Π̂t + (it − πt − rn) + rE

λ̂t + σcs,t


, (A.69)

Solving the differential equation above, we obtain

qE,t =
1

QE

ˆ ∞

t
e−ρ(s−t)Π̂sds −

ˆ ∞

t
e−ρ(s−t) (is + πs − rn) + rE(λ̂t + σcs,t)


ds. (A.70)

A.4 The approximation in the price of risk

Propostion 3 shows that an approximate block recursivity property holds when rkσcs,t =

O(it − rn2), for k ∈ {L, E}. The term premium at t = 0 is given by
´ ∞

0 e−(ρ+ψL)trL(σcs,t +

λ̂t)dt, so this assumption implies that we can approximate the term premium, up to first

order, by the expression
´ ∞

0 e−(ρ+ψL)trLλ̂tdt. Similarly, the drop in the stock price caused

by changes in risk premia is given by
´ ∞

0 e−ρtrE(σcs,t + λ̂t)dt ≈
´ ∞

0 e−ρtrEλ̂tdt under our

assumption about rkσcs,t. To assess the quantitative importance of this assumption, we

compare the discount rate effect on long-term bonds and equities when we include the

term rkσcs,t to the corresponding solution when this term is ignored.
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Figure A.1: Risk premium effect on long-term bonds and stocks.

Note: The left panel shows the term premium when the term rLσcs,t is included in the calculation (exact) and when this term is omitted
(approximation). The right panel shows the drop on the stock price due to changes in the price of risk when the term rLσcs,t is included
in the calculation (exact) and when this term is omitted (approximation).

Figure A.1 shows the effect of this approximation on the pricing of stocks and bonds.3

The left panel shows that the response of the yield on the long-term bond when we ommit

the term rLσcs,t is nearly identical to the one when this term is included. A similar pattern

emerges for stocks. The right panel shows the magnitude of the drop in the stock price

caused by movements in the price of risk. The solid line represent the calculation when

the term rEσcs,t is included, and the dashed line shows the calculation when this term is

omitted. Once again the approximate solution is nearly identical to the exact one.

B Derivations for Section 3

B.1 Trading in stocks

We consider next an extension where investors trade in stocks in the stationary equilib-

rium. In this case, the wealth effect of individual investors depends on the amount they

trade on short-term bonds, long-term bonds, and stocks. However, as in the baseline

model, the aggregate wealth effect depends only on the amount of government bonds

3Notice that we are only assessing the role of the assumption O(it − rn2). The lines we refer as
“Exact” in Figure A.1 still corresponds to a linearized solution.
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traded, as the household sector as a whole act as buy-and-hold investors on stocks.

The replicating portfolio. Let i ∈ Ij denote saver i of type j and assume that saver i

receives real income Ij,t(i) = aj(i)e−ψEtΠt. We assume that
´

i∈Ij
aj(i)di = 0 and that the

following condition is satisfied in a stationary equilibrium:

Bj,0(i) + E


ˆ ∞

0

ηt

η0
Ij,t(i)dt


= Bj,0, (B.1)

where Bj,0(i) is the initial wealth of saver i and Bj,0 is the average wealth of type-j savers.

This implies that the consumption of all savers is the same in the stationary equilibrium.

Let BS
j,t(i) = BS

j + B̃S
j,t(i) and BE

j,t(i) = BE
j + B̃E

j,t(i), then

B̃S
j,t + B̃E

j,t + QIj(i),t = 0, B̃S
j,t + B̃E

j,t
Q∗

E
QE

+ Q∗
Ij(i),t

= 0. (B.2)

We can then solve for the portfolio of individual i:

B̃S
j,t(i) = QIj(i),t

Q∗
E

QE − Q∗
E
− Q∗

Ij(i),t
QE

QE − Q∗
E

, (B.3)

B̃E
j,t(i) = Q∗

Ij(i),t
QE

QE − Q∗
E
− QIj(i),t

QE

QE − Q∗
E

. (B.4)

Pricing. Notice that we can write the expression for B̃E
j,t(i) as follows:

QE − Q∗
E

QE
B̃E

j,t(i) = −
QIj(i),t − Q∗

Ij(i),t

QIj(i),t
QIj(i),t, (B.5)

so rEB̃E
j,t(i) = −rIj(i)QIj(i),t. Assuming the economy is in the stationary equilibrium, the

value of the income claim in the disaster state is given by

Q∗
Ij(i),t

= aj(i)
e−ψEtΠ∗

r∗n + ψE
, (B.6)
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and the value of the income claim in the no-disaster state is given by

QIj(i),t =
aj(i)Πe−ψEt + λ


Cs
C∗

s

σ
Q∗

Ij(i),t

rn + λ


Cs
C∗

s

σ
+ ψE

. (B.7)

We can then write the portfolio holdings of investor i as follows:

B̃E
j,t(i) = −aj(i)e−ψEt QE

QE − Q∗
E

Π − rn+ψE
r∗n+ψE

Π∗

rn + λ


Cs
C∗

s

σ
+ ψE

(B.8)

B̃S
j,t(i) = aj(i)e−ψEt QE

QE − Q∗
E




Π + λ


Cs
C∗

s

σ
Π∗

r∗n+ψE

rn + λ


Cs
C∗

s

σ
+ ψE

Q∗
E

QE
− Π∗

r∗n + ψE



 . (B.9)

Notice that rIj(i) is given by

rIj(i) = λ


Cs

C∗
s

σ Π − rn+ψE
r∗n+ψE

Π∗

Π + λ


Cs
C∗

s

σ
Π∗

r∗n+ψE

. (B.10)

Linearizing the pricing condition for the income claim, we obtain

qIj,0 =
aj(i)Y
QIj,0

ˆ ∞

0
e−(ρ+ψE)tΠ̂tdt −

ˆ ∞

0
e−(ρ+ψE)t


it − πt − rn + rIj(i)pd,t


dt. (B.11)

Wealth effects. The intertemporal budget constraint for household i is given by

E0


ˆ ∞

0

ηt

η0
Cj,t(i)dt


= Bj,0(i) + E


ˆ ∞

0

ηt

η0


Ij,t(i) + Tj,t


dt


. (B.12)

Linearizing the equation above, we obtain

Ωj,0(i) =
1
Cj


BL

j qL,0 + BE
j,0(i)qE,0 + QTj qTj,0 + QIj(i),0qIj(i),0


+

QCj

Cj

ˆ ∞

0
e−ρt


it − πt − rn + rCj pd,t


dt,

(B.13)
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where QIj(i),0 is the value at 0 of a claim on Ij,t(i) for all t ≥ 0.

Using the fact that QCj = BS
j,0(i) + BL

j + BE
j,0(i) + QIj(i),0 + QTj and QCrCj = BL

j rL +

BE
j,0(i)rE + QIj(i),0rIj(i) + QTjrTj , we can write the wealth effect as follows:

Ωj,0(i) = Ωj,0 +
Y
Cj

ˆ ∞

0
e−ρt


BE

j,0(i)

QE
+ e−ψEtaj(i)


Π̂tdt

+
B̃S

j,0(i)

Cj

ˆ ∞

0
e−ρt(it − πt − rn)dt

+
QIj(i),0

Cj

ˆ ∞

0
e−ρt 1 − e−ψEt (it − πt − rn + rIj(i)pd,t)dt (B.14)

Notice that (1− e−ψEt)QIj(i),0 = QIj(i),0 −QIj(i),t, QIj(i),t = −B̃S
j,t(i)− B̃E

j,t(i), and rIj QIj(i),t =

rEB̃E
j,t(i). We can then write the expression above as follows:

Ωj,0(i) = Ωj,0 +
Y
Cj

ˆ ∞

0
e−ρt


B̃E

j,0(i)

QE
+ e−ψEtaj(i)


Π̂tdt

+
1
Cj

ˆ ∞

0
e−ρt∆BS

j,t(it − πt − rn)dt

+
1
Cj

ˆ ∞

0
e−ρt∆BE

j,t(it − πt − rn + rE pd,t)dt, (B.15)

where ∆BE
j,t = B̃E

j,t(i) − B̃E
j,0(i) and ∆BS

j,t = B̃S
j,t(i). Notice that as

´

i∈Ij
aj(i)di = 0, then

1
µj

´

i∈Ij
Ωj,0(i)di = Ωj,0.

The equation above express the wealth effect in terms of cumulative purchases of as-

sets. We can equivalently write the expression above in terms of instantaneous net pur-

chases of assets, as in Fagereng, Gomez, Gouin-Bonenfant, Holm, Moll and Natvik (2022).

For simplicity, assume there is no cash-flow effect. We can then write the integral above
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involving equities as follows:

ˆ ∞

0
e−ρt∆BE

j,t(it − πt − rn + rE pd,t)dt =
ˆ ∞

0
e−ρt(1 − e−ψEt)BE

j,0(q̇E,t − ρqE,t)dt

= BE
j,0


ˆ ∞

0
d(e−ρtqE,t)−

ˆ ∞

0
d(e−(ρ+ψE)tqE,t)


+

ˆ ∞

0
e−ρtNE

j,tqE,tdt (B.16)

= −
ˆ ∞

0
e−ρtNE

j,tqE,tdt. (B.17)

where NE
j,t = −ψEBE

j,t denotes the net purchases at period t, using the fact that it − πt −

rn + rE pd,t = q̇E,t − ρqE,t

B.2 Wealth effects and Hicksian compensation

Hicksian compensation. We show next that Ωj,0 corresponds to (minus) the Hicksian

wealth compensation for each household. Let ej(η, U) define the expenditure function

ej(η, U) = min
{Cj}

Ej,0


ˆ t∗

0

ηj,t

ηj,0
Cj,tdt +

ˆ ∞

t∗

η∗
j,t

ηj,0
C∗

j,tdt


, (B.18)

subject to Ej,0


´ t∗

0 e−
´ t

0 ρj,sds C1−σ
j,t −C1−σ

j
1−σ dt +

´ ∞
t∗ e−

´ t
0 ρj,sds (C

∗
j,t)

1−σ−(C∗
j )

1−σ

1−σ dt


= U. We sub-

tracted the utility of the stationary-equilibrium consumption bundle, so U = 0 corre-

sponds to the utility obtained in the stationary equilibrium. The solution to this problem

is the Hicksian demand Ch
j,t(ηj, U) and Ch,∗

j,t (ηj, U) in the no-disaster and disaster states.

Let η′ denote an alternative price process and U′ the corresponding utility under

the new equilibrium. Mas-Colell et al. (1995) (see page 62) defines the Hicksian wealth

compensation as ej(η
′
j, U) − ej(η

′
j, U′). We focus on a first-order approximation, that is,

η′
t/η′

0 = ηt/η0 + η̃t, where η̃t is small. Let c̃j,t ≡ log Ch
j,t(η

′, U)/Ch
j,t(η, U). Plugging the
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expression for Ch
j,t(η

′, U) into the constraint and linearizing, we obtain

Ej,0


ˆ t∗

0
e−ρjtCh

j,t(η, U)1−σ c̃j,tdt + e−ρjt∗
ˆ ∞

t∗
e−ρ∗j (t−t∗)Ch,∗

j,t (η, U)1−σ c̃∗j,tdt


= 0. (B.19)

Notice this implies that Ej,0


´ t∗

0
ηj,t
ηj,0

Ch
j,t(η, U)c̃j,tdt +

´ ∞
t∗

η∗
j,t

ηj,0
Ch,∗

j,t (η, U)c̃∗j,tdt

= 0. As work-

ers do not engage in intertemporal substitution, we set c̃w,t = c̃∗w,t = 0, so this equation

would hold for them as well. We can then write ej(η
′, U) up to first order as follows

ej(η
′, U) = E0


ˆ t∗

0

η′
t

η′
0

Ch
j,t(η, U)dt +

ˆ ∞

t∗

η′
t

η′
0

C∗,h
j,t (η, U)dt +

ˆ t∗

0

ηt

η0
Ch

j,t(η, U)c̃j,tdt +
ˆ ∞

t∗

η∗
t

η0
Ch,∗

j,t (η, U)c̃∗j,tdt


,

= E0


ˆ t∗

0

η′
t

η′
0

Ch
j,t(η, U)dt +

ˆ ∞

t∗

η′
t

η′
0

C∗,h
j,t (η, U)dt


. (B.20)

We assume that the initial equilibrium corresponds to the stationary equilibrium, so

Ch
j,t(η, U) = Cj and Ch,∗

j,t (η, U) = C∗
j . Let η′

j denote the SDF after the monetary shock and

U′ the corresponding utility level. Therefore, the Hicksian wealth compensation is given

by

ej(η
′
j, U)− ej(η

′
j, U′) = Ej,0


ˆ t∗

0

η′
j,t

η′
j,0

Cjdt +
ˆ ∞

t∗

η′
j,t

η′
j,0

C∗
j dt


−Ej,0


ˆ t∗

0

η′
j,0

η′
j,0

Cj,tdt +
ˆ ∞

t∗

η′
j,t

η′
j,0

C∗
j,tdt


,

(B.21)

which corresponds to −Ωj,0Cj as defined in the text.

Compensating and equivalent variation. From the derivation above, we obtain that

Ωj,0Cj = ej(η
′
j, U′) − ej(η

′
j, U), which corresponds to the compensating variation. We

show next that Ωj,0Cj also coincides with the equivalent variation up to first order. The EV

is given by ej(ηj, U′)− ej(ηj, U). Up to first order, Ch
j,t(η

′
j, U′)− Ch

j,t(ηj, U) = Ch
j,t(ηj, U′)−

Ch
j,t(ηj, U)+Ch

j,t(η
′
j, U)−Ch

j,t(ηj, U). As the present discounted value of Ch
j,t(η

′
j, U)−Ch

j,t(ηj, U)

is equal to zero, evaluated at the initial SDF, then the present discounted value of the left-
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hand side, Ch
j,t(η

′
j, U′) − Ch

j,t(ηj, U), equals the present discounted value of Ch
j,t(ηj, U′) −

Ch
j,t(ηj, U). The present discounted value of Ch

j,t(η
′
j, U′)− Ch

j,t(ηj, U) evaluated at η (or η′)

corresponds to CjΩj,0. The present discounted value of Ch
j,t(ηj, U′)− Ch

j,t(ηj, U) evaluated

at η equals the equivalent varation, so ej(ηj, U′)− ej(ηj, U) = CjΩj,0.

B.3 Consumption decomposition

We show next that the consumption response to a shock can be decomposed into the re-

sponse of a compensated (Hicksian) demand, which captures intertemporal subsitution

and precautionary effects, and a wealth effect. Consumption taxes only affect the com-

pensated demand, so the wealth effect is independent of taxes. We also provide a com-

parison with standard results with log utility. To better compare with previous results in

the literature, we focus on the case of a constant subjective discount rate, so we abstract

from Uzawa preferences here.

Household’s problem. Consider an exogenously given SDF:

dηt

ηt
= −rtdt + ξt(dNt − λtdt), (B.22)

where the probability of a Poisson event is λt.

The household’s problem with consumption taxes is given by

V(X, B) = max
Ct

E0


ˆ ∞

0
e−ρtu(Ct)dt


, s.t. E0


ˆ ∞

0

ηt

η0
(Ct(1 + τc

t )− Tt) dt

= B, (B.23)

where X = {rt, ξt, λt, τc
t } denote the path of interest rate, the jump in marginal utilities in

a disaster, the disaster probability, and the consumption tax.

The optimality condition for this problem is Ct = e−
ρ
σ t


ηt
η0
(1 + τc

t )
− 1

σ
µ− 1

σ , where µ

is the Lagrange multiplier on the budget constraint (IBC). Plugging the expression above

24



into the IBC, and using the fact that Tt = τc
t Ct, we obtain

Ct(X, B) =
e−

ρ
σ t


ηt
η0

1+τc
t

1+τc
0

− 1
σ

E0


´ ∞

0 e−
ρ
σ s


ηs
η0

 σ−1
σ


1+τc

s
1+τc

0

− 1
σ ds

B. (B.24)

Compensated demand. The expenditure minimization problem can be written as

e(X, U) = min
Ct

E0


ˆ ∞

0

ηt

η0
(Ct(1 + τc

t )− Tt) dt


, s.t. E0


ˆ ∞

0
e−ρtu(Ct)dt


= U. (B.25)

The first-order condition is given by

ηt

η0
(1 + τc

t ) =
1
µ

e−ρtu′(Ct) ⇒ Ct = e−
ρ
σ t


ηt

η0
(1 + τc

t )

− 1
σ

µ− 1
σ . (B.26)

Plugging the expression above into the expression for utility, we obtain

Ch
t (X, U) =

e−
ρ
σ t


ηt
η0
(1 + τc

t )
− 1

σ

E0


´ ∞

0 e−
ρ
σ s


ηs
η0
(1 + τc

s )
 σ−1

σ ds
 1

1−σ

g(U). (B.27)

where g(U) ≡ ((1 − σ)U)
1

1−σ . The expenditure function is given by

e(X, U) =

E0


´ ∞

0 e−
ρ
σ t


ηt
η0

 σ−1
σ

(1 + τc
t )

− 1
σ dt



E0


´ ∞

0 e−
ρ
σ t


ηt
η0
(1 + τc

t )
 σ−1

σ dt
 1

1−σ

g(U). (B.28)

Initial equilibrium. Let (X, B) denote the state in an initial equilibrium. In the initial

equilibrium, all variables are constant conditional on no switching, and the consumption

tax is set to zero. The SDF on the no-disaster state is given by ηt = e−(r+ξλ)tη0. The SDF
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on the disaster state is given by η∗
t = e−r∗(t−τ)(1 + ξ)ητ, where τ is the (random) date of

switch. In equilibrum, we must have r = ρ − ξλ and r∗ = ρ.

Consumption in the no-disaster and disaster states are given by

Ct(X, B) =
ρ(ρ + λ)

ρ + λ(1 + ξ)
σ−1

σ

B, C∗
t (X, B) =

ρ(ρ + λ)(1 + ξ)−
1
σ

ρ + λ(1 + ξ)
σ−1

σ

B. (B.29)

Initial wealth is given by

B =

ˆ ∞

0
e−(ρ+λ)t


Dt + λ(1 + ξ)B∗

t


dt, (B.30)

where B∗
t =
´ ∞

t
η∗

s
η∗

t
D∗

s ds. We assume that Dt = e−ψDtD0 and D∗
t = (1 − ζD)e−ψD(t−τ)Dτ,

which nests the case of long-term bonds and stocks. The value of a consumption claim is

QC =
ρ + λ(1 + ξ)

σ−1
σ

ρ(ρ + λ)
C, Q∗

C =
(1 + ξ)−

1
σ

ρ
C ⇒ QC − Q∗

C
QC

= 1 − (ρ + λ)(1 + ξ)−
1
σ

ρ + λ(1 + ξ)
σ−1

σ

. (B.31)

Economy of interest. Consider the economy of interest with state (X, B). We consider

the effect of a shock to the interest rate rt, the disaster probability λt, and the consumption

tax τc
t . The SDF in the economy of interest is given by ηt = e−

´ t
0 (ρ+rt−r+ξ(λz−λ))dzη0 in the

no-disaster state and η∗
t = e−ρ(t−τ)(1 + ξ)ητ.

Initial wealth. Bt denotes the household’s wealth at t. The pricing condition for Bt is

Ḃt

Bt
= rt −

Dt

Bt
+ λt(1 + ξt)ξB,t, (B.32)

where ξB,t =
Bt−B∗

t
Bt

. Linearizing the expression above, we obtain

ḃt = (ρ + λ + ψD)bt + rt − ρ + rBλ̂t, (B.33)
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where rB = λ(1 + ξ)ξB and λ̂t =
λt−λ

λ
. The initial wealth is then given by

b0 = −
ˆ ∞

0
e−(ρ+λ+ψD)t


rt − ρ + rBλ̂t


dt. (B.34)

Consumption claim. The consumption claim is given by

QC,0 = E0


ˆ ∞

0

ηs

ηs
Csds


. (B.35)

The pricing condition for QC,0 is given by

Q̇C,t

QC,t
= − Ct

QC,t
+ rt + λt(1 + ξt)

QC,t − Q∗
C,t

QC,t
. (B.36)

Let qC,t ≡ log QC,t/QC and q∗C,t ≡ log Q∗
C,t/Q∗

C. Then,

q̇C,t = (ρ + λ)qC,t + rt − r + rCλ̂t −
C

QC
ct − λ(1 + ξ)

Q∗
C

QC
q∗C,t. (B.37)

where ct ≡ log Ct/C. Solving the expression above forward, we obtain

qC,0 = (ρ + λ)

ˆ ∞

0
e−(ρ+λ)tctdt −

ˆ ∞

0
e−(ρ+λ)t[rt − r + rCλ̂t]dt. (B.38)

using q∗C,t = c∗t , c∗t = ct, and C
QC

+ λ(1 + ξ)
Q∗

C
QC

= ρ + λ.

IBC and wealth effects. Linearizing the intertemporal budget constraint, we obtain

QCqC,0 = Bb0 ⇒ (ρ + λ)

ˆ ∞

0
e−(ρ+λ)tctdt =

C
B

Ω0, (B.39)
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where Ω0 denotes the wealth effect:

Ω0 ≡ B
C


b0 +

ˆ ∞

0
e−(ρ+λ)t(rt − R + rCλ̂t)dt


. (B.40)

Consumption. Denote the denominator of the expression for consumption as follows:

QC,0 = E0


ˆ ∞

0

ηs

ηs
Csds


, (B.41)

where Ct =


eρt ηt
η0
(1 + τc

t )
− 1

σ . Notice that Ct is proportional to consumption. A similar

derivation as above yields

qC,0 = (ρ + λ)

ˆ ∞

0
e−(ρ+λ)tĈtdt −

ˆ ∞

0
e−(ρ+λ)t[rt − r + rCλ̂t]dt. (B.42)

using q∗C,t = Ĉt and C
QC

+ λ(1+ ξ)
Q∗
C

QC
= ρ+ λ. Notice that Ĉt =

1
σ

´ t
0 (rz − r + ξλλ̂z − ˙̂τc

z )dz.

Consumption is then given by

ct = Ĉt + b0 − qC,0 = Ĉt − (ρ + λ)

ˆ ∞

0
e−(ρ+λ)tĈtdt +MΩ0 (B.43)

Compensated demand. We evaluate the compensated demand at the utility level:

U0 = Et


ˆ ∞

0
e−ρtu(Ct)dt


. (B.44)

Notice that U0 responds to changes in λt even if Ct does not change. The utility level

satisfies the HJB equation:

ρUt = u(Ct) + U̇t + λt(U∗
t − Ut). (B.45)
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Let ut = log Ut/U. Then, ut satisfies the condition

u̇t − (ρ + λ)ut = λ


1 − U∗

U


λ̂t ⇒ u0 = −λ


1 − U∗

U


ˆ ∞

0
e−(ρ+λ)tλ̂tdt, (B.46)

where U∗
U = (ρ+λ)(1+ξ)

σ−1
σ

ρ+λ(1+ξ)
σ−1

σ
. The expenditure function is given by

ê0 =
σ

σ − 1


(ρ + λ)

ˆ ∞

0
e−(ρ+λ)tĈtdt −

ˆ ∞

0
e−(ρ+λ)t[rt − ρ + rCλ̂t]dt


−
ˆ ∞

0
e−(ρ+λ)t

˙̂τc
t

1 − σ
dt+

u0

1 − σ
.

(B.47)

We can write the expression above as follows:

ê0 =
σ

σ − 1


1
σ

ˆ ∞

0
e−(ρ+λ)t(rt − ρ + ξλλ̂t)dt −

ˆ ∞

0
e−(ρ+λ)t[rt − ρ + rCλ̂t]dt


+

u0

1 − σ
,

(B.48)

where τ̂c
t cancels out from the previous expression.

We can write the expression above as follows:

ê0 =
λ


1 − U∗
U


− (rC − ξλ)

σ − 1

ˆ ∞

0
e−(ρ+λ)tλ̂tdt −

ˆ ∞

0
e−(ρ+λ)t[rt − ρ + rCλ̂t]dt, (B.49)

Notice that rC − ξλ can be written as follows:

λ


1 + ξ − (ρ + λ)(1 + ξ)

σ−1
σ

ρ + λ(1 + ξ)
σ−1

σ


− ξλ = λ


1 − U∗

U


. (B.50)

We can then write the expenditure function as follows:

ê0 = −
ˆ ∞

0
e−(ρ+λ)t[rt − ρ + rCλ̂t]dt. (B.51)
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The compensated demand is given by

ch
t = Ĉt −

1
1 − σ

qC,0 −
1

1 − σ

ˆ ∞

0
e−(ρ+λ)t ˙̂τc

t dt +
u0

1 − σ
= C0 − qC,0 + ê0. (B.52)

We can write the expression above as follows:

ch
t =

1
σ

ˆ t

0
(rz − r + ξλλ̂z − ˙̂τc

z )dz − 1
σ

ˆ ∞

0
e−(ρ+λ)z(rz − r + ξλλ̂z − ˙̂τc

z )dz. (B.53)

Decomposition. We can write consumption as follows:

ct = Ĉt − qC,0 + e0 + b0 − e0 = ch
t +MΩ0. (B.54)

The role of taxes. The decomposition above sheds light on the role of the consumption

taxes in Proposition 4. Notice that the consumption tax only affects the compensated

demand. Moreover, if ˙̂τc
t = ξλ, then ch

t is independent of λ̂t. In this case, the only channel

that changes in λ̂t can affect consumption is through the wealth effect. Consistent with

the discussion in Section 3, the wealth effect is equal to zero in response to a discount rate

shock if Ct = Dt.

Comparison with log utility. If σ = 1, so the household has log utility, then consump-

tion is given by

C0 = E0


ˆ ∞

0
e−
´ t

0 (ρ+
˙̂τc
z )dzdt

−1

B0. (B.55)

We recover the standard log-utility result, C0 = ρB0, when τ̂c
t = 0. In this case, log

consumption is given by c0 = b0. We have seen above that c0 = ch
0 +MΩ0 and Ω0 = 0

when Ct = Dt. This implies that ct = ch
t , which holds for any value of σ. The log-utility
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case is special as we have the following equalities:

c0 = ch
0 = b0, (B.56)

as rC = ξλ when σ = 1. In this case, the consumption of a log-utility investor coincides

with the response of the compensated demand.

B.4 iMPCs

The problem of saver j can be written as

V(η, ω) = Ej,0


ˆ ∞

0
e−
´ t

0 ρj,sds
C̃1−σ

j,t

1 − σ
dt


, (B.57)

subject to

Ej,0


ˆ ∞

0

η̃j,t

ηj,0
C̃j,tdt


= ω, (B.58)

where ηj,t denotes the SDF under saver j’s beliefs, which evolves according to
dηj,t
ηj,t

=

−


it − πt + λj
η∗

j,t−ηj,t

ηj,t


dt+

η∗
j,t−ηj,t

ηj,t
dNt, C̃j,t = Cj,t if the economy is in the no-disaster state,

and C̃j,t = C∗
j,t if the economy is in the disaster state. The SDF satisfies the change of

measure conditions: λj
η∗

j,t
ηj,t

= λt
η∗

t
ηt

and
ηj,t
η0,t

= e−
´ t

0 (λs−λj)ds ηt
η0

.

The first-order conditions for this problem are given by

e−
´ t

0 ρj,sdsC̃−σ
j,t = Λ

η̃j,t

ηj,0
, (B.59)

where Λ is the Lagrange multiplier on the intertemporal budget constraint.
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The intertemporal budget constraint can be written as

ˆ ∞

0
e−λjt

ηj,t

ηj,0


Cj,t + λj

η∗
j,t

ηj,t
Q∗

Cj,t


dt = ω, (B.60)

where Q∗
Cj,t

=
´ ∞

t
η∗

j,s
η∗

j,t
C∗

j,sds is the value of a consumption claim for an economy that

switches to the disaster state at time t. Applying a change of measure, we can write

the equation above as follows:

ˆ ∞

0
e−
´ t

0 λsds ηt

η0


Cj,t + λt

η∗
t

ηt
Q∗

Cj,t


dt = ω. (B.61)

The stationary equilibrium. In a stationary equilibrium, we have that η∗
j,t = e−r∗n(t−t∗)η∗

j,t∗ .

Given our assumption that ρ∗j = r∗n, then C∗
j,t = C∗

j,t∗ , so Q∗
Cj,t∗

=
C∗

j,t∗
r∗n

. From the optimality

condition for risky assets, λ


Cs
C∗

s

σ
= λj


Cj
C∗

j

σ

, we obtain

C∗
j =

λ
1
σ
j

λ
1
σ

C∗
s

Cs
Cj. (B.62)

Plugging the condition above, and using the fact that consumption in the no-disaster

state is constant, we obtain

ˆ ∞

0
e−ρt



Cj + λ


Cs

C∗
s

σ−1 λ
1
σ
j

λ
1
σ

Cj

r∗n



 dt = ω. (B.63)
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Rearranging the expression above, we obtain

Cj =
ρ

1 + χλ
1
σ
j  

MPCj

ω, C∗
j =

ρχ∗λ
1
σ
j

1 + χλ
1
σ
j  

MPC∗
j

ω (B.64)

where χ ≡ λ
σ−1

σ

r∗n


Cs
C∗

s

σ−1
and χ∗ ≡ λ− 1

σ
C∗

s
Cs

. The expressions above show that savers have

heterogeneous MPCs. Optimistic investors have higher MPCs in the no-disaster state,

while they have lower MPCs (out of initial wealth) in the disaster state.

Perturbation. Consider a perturbation of the environment above, where wealth and the

SDF are subject to small shocks. From the Euler equations, we obtain

ċj,t = σ−1(it − πt − rn) +
λ

σ


Cs

C∗
s

σ

(λ̂t + σcs,t)− ξ(cj,t − cs,t), (B.65)

and

λ̂t + σ(cs,t − c∗s,t) = σ(cj,t − c∗j,t). (B.66)

We can write the equations above as follows:

cj,t = cs,t + e−ξt(cj,0 − cs,0), c∗j,t = cj,t − cs,t −
1
σ

λ̂t. (B.67)

Linearizing the intertemporal budget constraint, we obtain

ˆ ∞

0
e−ρt


cj,t + χc∗j

c∗j,t


dt = Ωj,0, (B.68)

where χc∗j
= λ

ρs


Cs
C∗

s

σ C∗
j

Cj
= χλ

1
σ
j .

Combining the expressions for consumption with the intertemporal budget constraint,
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we obtain
1 + χc∗j

ρ + ξ
(cj,0 − cs,0) = Ωj,0 − Ωs,0 +

χc∗j

σ

λ̂0

ρ + ξ
. (B.69)

Rearranging the expression above, we obtain

cj,0 = cs,0 +
ρ + ξ

1 + χλ
1
σ
j

(Ωj,0 − Ωs,0) +
χλ

1
σ
j

1 + χλ
1
σ
j

λ̂0

σ
. (B.70)

Consumption at date t in the no-disaster state is given by

cj,t = cs,t +
(ρ + ξ)e−ξt

1 + χλ
1
σ
j

(Ωj,0 − Ωs,0) +
χλ

1
σ
j

1 + χλ
1
σ
j

λ̂t

σ
. (B.71)

Consumption at date t in the disaster state is given by

c∗j,t =
(ρ + ξ)e−ξt

1 + χλ
1
σ
j

(Ωj,0 − Ωs,0)−
1

1 + χλ
1
σ
j

λ̂t

σ
. (B.72)

An increase in Ωj,0 raises consumption in both states, while an increase in λ̂t raises

consumption in the no-disaster state and reduces consumption in the disaster state.

MPCs and iMPCs. Define the intertemporal MPCs, or iMPCs, for saver j in the no-disaster

and disaster states as follows

Mj,t ≡
∂cj,t

∂Ωj,0
=

(ρ + ξ)

1 + χλ
1
σ
j

e−ξt, M∗
j,t ≡

C∗
j

Cj

∂c∗j,t
∂Ωj,0

=
(ρ + ξ)χ∗λ

1
σ
j

1 + χλ
1
σ
j

e−ξt. (B.73)

Optimistic investors have higher iMPCs than pessimistic investors in the no-disaster

state, while pessimistic investors have higher iMPCs than optimistic investors in the dis-
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aster state. However, the average iMPC is the same for both types of savers:

ˆ ∞

0
e−ρt


Mj,t +

λ

ρs


Cs

C∗
s

σ

M∗
j,t


dt = 1. (B.74)

Market-implied disaster probability. We can write λ̂t as follows:

λ̂t =

σµc,oµc,p


λ

1
σ
p − λ

1
σ
o



µc,oλ
1
σ
o + µc,pλ

1
σ
p  

≡χλ,c

(cp,t − co,t) (B.75)

The consumption share is given by

µc,j =

ρµjωj

1+χλ
1
σ
j

ρµoωo

1+χλ
1
σ
o

+
ρµpωp

1+χλ
1
σ
p

=
µj

1 + χλ
1
σ
j

(1 + χλ
1
σ
o )(1 + χλ

1
σ
p )

µo(1 + χλ
1
σ
p ) + µp(1 + χλ

1
σ
o )

, (B.76)

using the fact that ωo = ωp, as Bo = Bp and To = Tp in the stationary equilibrium.

The coefficient on multiplying cp,t − co,t on the expression for λ̂t can then be written as

χλ,c =
σµc,0µc,p

µoλ
1
σ
o

1+χλ
1
σ
o

+
µpλ

1
σ
p

1+χλ
1
σ
p


(1+χλ

1
σ
o )(1+χλ

1
σ
p )

µo(1+χλ
1
σ
p )+µp(1+χλ

1
σ
o )


λ

1
σ
p − λ

1
σ
o


(B.77)

=
χ∗

χ

σµc,0µc,p


µo

µo+µp
(1 + χλ

1
σ
p ) +

µp
µo+µp

(1 + χλ
1
σ
o )




µo

µo+µp

(ρ+ξ)χ∗λ
1
σ
o

1+χλ
1
σ
o

+
µp

µo+µp

(ρ+ξ)χ∗λ
1
σ
p

1+χλ
1
σ
p


(ρ + ξ)χ


λ

1
σ
p − λ

1
σ
o



(1 + χλ
1
σ
o )(1 + χλ

1
σ
p )

(B.78)

=
χ∗

χ

σµc,0µc,p


µo

µo+µp
(1 + χλ

1
σ
p ) +

µp
µo+µp

(1 + χλ
1
σ
o )




µo

µo+µp
M∗

o,0 +
µp

µo+µp
M∗

p,0



Mo,0 −Mp,0


. (B.79)
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Heterogeneous MPCs and precautionary motive. The difference in consumption at

date t is given by

cp,t − co,t = Mp,t(Ωp,0 − Ωs,0)−Mo,t(Ωo,0 − Ωs,0) +

M∗

p,0 −M∗
o,0

 χ∗

χ

λ̂t

σ

1
ρ + ξ

. (B.80)

Using Ωs,0 = µc,oΩo,0 + µc,pΩp,0, we can write the expression above as follows:

cp,t − co,t =

Mp,tµc,o +Mo,tµc,p


(Ωp,0 − Ωo,0) +


M∗

p,0 −M∗
o,0

 χ∗

χ

λ̂t

σ

1
ρ + ξ

. (B.81)

As λ̂t = χλ,c(cp,t − co,t), then

cp,t − co,t =
Mp,tµc,o +Mo,tµc,p

1 −

M∗

p,0 −M∗
o,0


χ∗

χ
χλ,c

σ
1

ρ+ξ


Ωp,o − Ωo,0


. (B.82)

Therefore, λ̂t is given by

λ̂t =
χλ,c


Mp,tµc,o +Mo,tµc,p



1 −

M∗

p,0 −M∗
o,0


χ∗

χ
χλ,c

σ
1

ρ+ξ


Ωp,o − Ωo,0


.

Given the expression for χλ,c, we can write λ̂t as follows:

λ̂t =
χ∗

χ

σ(ρ + ξ)µc,oµc,p
µo

µo+µp
M∗

o,0 +
µp

µo+µp
M∗

p,0


Mo,t −Mp,t

 
Ωp,o − Ωo,0



1 −

M∗

p,0 −M∗
o,0


χ∗

χ
χλ,c

σ
1

ρ+ξ

. (B.83)

B.5 Minimum State Variable Solution

General formulation. Consider a general dynamic system involving the vector of en-

dogeneous variables Zt = [K′
t, Y′

t ]
′, where Yt is a vector of non-predetermined variables
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and Kt a vector of predetermined variables. The dynamics of Zt is given by

Żt = AZt + BVt, (B.84)

given K0, where Vt is a vector of disturbances following the dynamics V̇t = ΨvVt.

The minimum state-variable (MSV) solution takes the form:

Yt = ΦYKKt + ΦYVVt, K̇t = ΦKKKt + ΦKVVt. (B.85)

We can obtain the MSV solution using the method of undetermined coefficients. Im-

portantly, the method produces a unique solution even when the number of negative

eigenvalues exceed the number of predetermined variables.

MSV solution of baseline model. Consider the dynamic system given by (10) and (11),

given a process for it and λ̂t. In particular, we assume that it follows the continuous-time

analog of an AR(K) process: it − rn = Γ′
iVt, where V̇t = ΨVVt, for ΨV diagonal.4 We know

that λ̂t = e−ψλtλ̂0, where λ̂0 is a function of the path for it − rn. We assume that one of

the variables in Vt decay at rate ψλ, so we can write λ̂t = Γ′
λVt. After replacing it − rn and

λ̂t for the appropriate linear functions of Vt, we obtain a dynamic system in Zt = [yt, πt]′.

The MSV solution is given by

yt = Φ′
yVt, πt = Φ′

πVt. (B.86)

Using the method of undetermined coefficients, we obtain

Φ′
yΨV = σ̃−1(Γ′

i − Φ′
π) + δΦ′

y + χpd Γ′
λ, Φ′

πΨv = ρΦ′
π − κΦ′

y. (B.87)

4In discrete time, we can write an AR(K) as (1 − a1L − . . . aK LK)yt = vt, so yt = vt
(1−λ1L)...(1−λK L) =

∑K
k=1 ΓikVk,t, assuming λi are distinct, where Vk,t ≡ vt

1−λi L
. Hence, yt is a sum of K AR(1) variables.
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Rearranging the expression above, we obtain the linear system



−ψk − δ σ̃−1

κ −ψk − ρ







Φyk

Φπk



 =



σ̃−1Γik + χpdΓλk

0



 , (B.88)

where −ψk is the k-th element of the diagonal of ΨV . Solving the system above, we obtain



Φyk

Φπk



 = − 1
(ω + ψk)(ω + ψk)



ρ + ψk

κ






σ̃−1Γik + χpdΓλk


, (B.89)

assuming ψk ∕= −ω.

We show next how to implement the MSV solution using a Taylor rule. Suppose ut =

∑K
k=1 ϕkuk,t, where uk,t = Vk,t. We adopt the normalization Vk,0 = i0 − rn. The nominal

rate under the Taylor rule is given by

it − rn =
K

∑
k=1

ϕk
(ω + ψk)(ω + ψk)

(ω1 + ψk)(ω2 + ψk)
uk,t −

φπκχλ

(ω1 + ψλ)(ω2 + ψλ)
e−ψλt(i0 − rn).

In the case ψk ∕= ψλ, the coefficient ϕk = Γik
(ω1+ψk)(ω2+ψk)
(ω+ψk)(ω+ψk)

. In the case ψk = ψλ, the

coefficient is given by ϕk =
Γik(ω1+ψλ)(ω2+ψλ)+φπκχλ

(ω+ψλ)(ω+ψλ)
.

Output is then given by

yt = −
K

∑
k=1

Γik
ρ + ψk

(ω + ψk)(ω + ψk)
σ̃−1uk,t −

(ρ + ψλ)χ̃λ

(ω + ψλ)(ω + ψλ)
e−ψλt(i0 − rn)

πt = −
K

∑
k=1

ϕk
κ

(ω + ψk)(ω + ψk)
σ̃−1uk,t −

κχ̃λ

(ω + ψλ)(ω + ψλ)
e−ψλt(i0 − rn),

where

χ̃λ = χλ


φπκσ̃−1

(ω1 + ψλ)(ω2 + ψλ)
+

(ω + ψλ)(ω + ψλ)

(ω1 + ψλ)(ω2 + ψλ)


= χλ. (B.90)
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Finally, the coefficient λ is given by

λ =

χλ,c
ρ+ξ
χb,c


BL

o
Bo

− BL
p

Bp



1 − χλ,c
ρ+ξ
χb,c


BL

o
Bo

− BL
p

Bp


rL

ρ+ψL+ψλ

K

∑
k=1

Γik
i0 − rn

ρ + ψL + ψk
=

K

∑
k=1

Γikλ,k. (B.91)

Hence, given an interest rate it − rn = ∑K
k=1 Γike−ψkt(i0 − rn), we can write the solution

for output and inflation as yt = ∑K
k=1 Γikyk,t and πt = ∑K

k=1 Γikπk,t, where yk,t and πk,t

correspond to the solution when the interest rate follows the process e−ψkt(i0 − rn).

The case where ut = ϕ1e−ψmt(i0 − rn), ψm ∕= ψλ, corresponds to the coefficients:

Γi1 = 1 +
φπκχλ

(ω + ψλ)(ω + ψλ) + σ̃−1φπκ
, Γi2 = − φπκχλ

(ω + ψλ)(ω + ψλ) + σ̃−1φπκ
,

(B.92)

where ψ1 = ψm and ψ2 = ψλ.

In the case ψm = ψλ, we have Γi1 = 1, which requires

ϕ1 = 1 +
(σ̃−1 + χλ)φπκ

(ω + ψm)(ω + ψm)
. (B.93)

B.6 Determinacy and implementability

We derive next the conditions for local determinacy in our D-HANK model. We also show

that any path of the nominal interest rate and the fiscal backing can be obtained with the

monetary rule (6) and an appropriately chosen path of the monetary shock, [ut]∞0 .

Proposition 9 (Determinacy and implementability). Consider a given monetary shock [ut]∞0 .

i. (Determinacy) If φπ ≥ φπ ≡ 1 − ρδ

σ̃−1κ
, then there exists a unique bounded solution to

the system comprised of the Taylor rule (6), the aggregate Euler equation (10), the NKPC

(11), the market-implied disaster probability (15), and the law of motion of relative con-
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sumption (16) and relative net worth (17). We denote this solution by [it , yt , π
t , λ̂

t , cp,t −

co,t, bp,t − bo,t] and the associated path of taxes by τ
t .

ii. (Implementability) For a given path of nominal interest rates it − rn = e−ψmt(i0 − rn),

ψm ∕= −ω, and fiscal backing
´ ∞

0 e−ρtτtdt, let λ̂t be given by (17), yt be given by (26), and

πt be given by (28), where Ω0 is given by (29). If the monetary shock ut is given by

ut = it − rn − φππt, (B.94)

then it = it and
´ ∞

0 e−ρtτ
t dt =

´ ∞
0 e−ρtτtdt. Moreover, yt = yt, π

t = πt, and λ̂
t = λ̂t.

The first part of Proposition 9 shows that there is a unique bounded equilibrium if

φπ ≥ φπ. As in Acharya and Dogra (2020), the threshold for determinacy satisfies φπ < 1,

so uniqueness is obtained under a weaker condition than in the textbook model. The

second part of Proposition 9 shows how to implement any given path of policy variables

by appropriately chosing the monetary shock ut. Combined with Propositions 6-7, this

provides a complete characterization of how output and inflation respond to monetary

policy.

Proof of Proposition 9. We divide this proof in three steps. First, we derive the condition

for local uniqueness of the solution under the policy rule (6). Second, we derive the path

of [yt, πt, λ̂t, bp,t − bo,t, it]∞0 for a given path of monetary shocks. Third, we show how to

implement a given path of nominal interest rates it − rn = e−ψmt(i0 − rn) and a given

value of fiscal backing
´ ∞

0 e−ρtτtdt.

Equilibrium determinacy. First, using the Taylor rule, we can write νt in Equation ?? as

νt = σ̃−1(φπ − 1)πt + χλλ̂t + σ̃−1ut. Combining the Phillips curve (11) with the system
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(A.54), we obtain a dynamic system in the variables [yt, π, λ̂t, bp,t − bo,t]:





ẏt

π̇t

˙̂λt

ḃp,t − ḃo,t




=





δ σ̃−1(φπ − 1) χλ 0

−κ ρ 0 0

0 0 0 −ξ̃χλ,∆c

0 0 −χ∆b,λ χ∆b,∆b









yt

πt

λ̂t

bp,t − bo,t




+





σ̃−1

0

0

0




ut,

where λ̂t = χλ,∆c(co,t − cp,t) and χ∆b,λ = χ∆b,∆c/χλ,∆c, given the boundary condition

bp,0 − bo,0 = −


BL
p

Bp
− BL

o
Bo


ˆ ∞

0
e−(ρ+ψL)t(φππt + ut + rLλ̂t)dt.

There is a unique bounded solution of the system above if the matrix of coefficients

above has three eigenvalues with positive real parts and one eigenvalue with a negative

real part. Denote the matrix of coefficients by A and consider the eigendecomposition of

the matrix A = VΩV−1, where Ω is the diagonal matrix of eigenvalues and V the matrix

of eigenvectors. The eigenvalues are given by

ω1 =
ρ + δ +


(ρ + δ)2 − 4 (σ̃−1(φπ − 1)κ + ρδ)

2
, ω3 =

χ∆b,∆b +


χ2
∆b,∆b + ξ̃χλ,∆cχ∆b,λ

2

ω2 =
ρ + δ −


(ρ + δ)2 − 4 (σ̃−1(φπ − 1)κ + ρδ)

2
, ω4 =

χ∆b,∆b −


χ2
∆b,∆b + ξ̃χλ,∆cχ∆b,λ

2
.

Notice that ω3 > 0 and ω4 < 0. Therefore, equilibrium determinacy requires ω1 > 0

and ω2 > 0. A necessary condition is φπ > 1 − ρδ

σ̃−1κ
≡ φπ, as otherwise the first two

eigenvalues are real-valued and ω2 ≤ 0. For φπ sufficiently large, the eigenvalues are

complex, but their real part is still positive. So, the condition φπ > ππ is sufficient to

ensure determinacy.
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Solution of the dynamic system. In matrix form, the dynamic system is given by Żt =

AZt + But, where Zt = [yt, πt, λ̂t, bp,t − bo,t]′ and B = [σ̃−1, 0, 0, 0]′. Let zt = V−1Zt

and b = V−1B, which gives the system żt = Ωzt + but. For i = 1, 2, 3, we can solve

the equation forward, zi,t = −bi
´ ∞

t e−ωi(s−t)usds, and for i = 4 we solve it backwards:

z4,t = eω4tz4,0 + b4
´ t

0 eω4(t−s)usds. Rotating to the original coordinates, we obtain:

Zt = v4eω4tz4,0 −
3

∑
i=1

vibi

ˆ ∞

t
e−ωi(s−t)usds + v4b4

ˆ t

0
eω4(t−s)usds,

where vi denotes the ith eigenvector, which are given by

v1 =

κ−1(ρ − ω1), 1, 0, 0

′
, v3 =


v3,1,

κv3,1

ρ − ω3
,

χ∆b,∆b − ω3

χ∆b,λ
, 1
′

v2 =

κ−1(ρ − ω2), 1, 0, 0

′
, v4 =


v4,1,

κv4,1

ρ − ω4
,

χ∆b,∆b − ω4

χ∆b,λ
, 1
′

,

vi,1 = − (ρ−ωi)χλ

(δ−ωi)(ρ−ωi)+κσ̃−1(φπ−1)
χ∆b,∆b−ωi

χ∆b,λ
for i = 3, 4, and b = [− κσ̃−1

ω1−ω2
, κσ̃−1

ω1−ω2
, 0, 0]′. Using

the fact that ψλ = −ω4, we obtain bp,t − bo,t = e−ψλt(bp,0 − bo,t) and λ̂t =
χ∆b,∆b+ψλ

χ∆b,λ
e−ψλt(bp,0 −

bo,0), which coincides with the results from Proposition 3. yt and πt are given by

yt =
2

∑
i=1

(−1)i σ̃−1(ωi − ρ)

ω1 − ω2

ˆ ∞

t
e−ωi(s−t)usds − χλ(ρ + ψλ)

(ω1 + ψλ)(ω2 + ψλ)
λ̂t

πt =
2

∑
i=1

(−1)i−1 σ̃−1

ω1 − ω2

ˆ ∞

t
e−ωi(s−t)usds − κχλ

(ω1 + ψλ)(ω2 + ψλ)
λ̂t.

If ut = ∑K
k=1 ϕkuk,t, where uk,t = e−ψktuk,0, then

yt = −
K

∑
k=1

ϕk
ρ + ψk

(ω1 + ψk)(ω2 + ψk)
σ̃−1uk,t −

χλ(ρ + ψλ)

(ω1 + ψλ)(ω2 + ψλ)
λ̂t

πt = −
K

∑
k=1

ϕk
κ

(ω1 + ψk)(ω2 + ψk)
σ̃−1uk,t −

κχλ

(ω1 + ψλ)(ω2 + ψλ)
λ̂t.
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The nominal interest rate is given by

it − rn =
K

∑
k=1

ϕk
(δ + ψk)(ρ + ψk)− σ̃−1κ

(ω1 + ψk)(ω2 + ψk)
uk,t −

φπκχλ

(ω1 + ψλ)(ω2 + ψλ)
λ̂t.

The initial value of λ̂0 satisfies the condition:

λ̂0 = −χ∆b,∆b + ψλ

χ∆b,λ


BL

p

Bp
− BL

o
Bo


ˆ ∞

0
e−(ρ+ψL)t(it − rn)dt +

rL

ρ + ψL + ψλ
λ̂0


,

solving for λ̂0, we obtain

λ̂0 =

χ∆b,∆b+ψλ

χ∆b,λ


BL

o
Bo

− BL
p

Bp



1 − χ∆b,∆b+ψλ

χ∆b,λ


BL

o
Bo

− BL
p

Bp


rL

ρ+ψL+ψλ

ˆ ∞

0
e−(ρ+ψL)t(it − rn)dt.

Combining the expression above with the expression for it, we obtain

λ̂0 =

χ∆b,∆b+ψλ

χ∆b,λ


BL

o
Bo

− BL
p

Bp


∑K

k=1 ϕk
(δ+ψk)(ρ+ψk)−σ̃−1κ
(ω1+ψk)(ω2+ψk)

uk,0
ρ+ψL+ψk

1 + χ∆b,∆b+ψλ

χ∆b,λ


BL

o
Bo

− BL
p

Bp

 
φπκχλ

(ω1+ψλ)(ω2+λ)
1

ρ+ψL+ψλ
− rL

ρ+ψL+ψλ

 .

Implementability condition. Take it − rn = e−ψmt(i0 − rn) and
´ ∞

0 e−ρtτtdt as given, let

Ω0 be given by (29), yt be given by (26) and πt be given by (28). Define ut as follows:

ut = it − rn − φππt. (B.95)

Let [yt , π
t , λ̂

t , bp,t − bo,t]
∞
0 be the solution to the four-dimensional dynamic system dis-

cussed above and [it , τ
t ] the associated interest rate and fiscal backing. We show next

that yt = yt, π
t = πt, λ̂

t = λ̂t and it = it. First, notice that ut = ∑3
i=1 ϕke−ψktuk,0, where

43



uk,0 = i0 − rn, and ϕk and ψk are given by

ϕ1 = 1 +
φπσ̃−1κ

(ω + ψm)(ω + ψm)
, ψ1 = ψm, ϕ2 =

φπ
1−µw

1−µwχy
χpκ

(ω + ψλ)(ω + ψλ)
, ψ2 = ψλ,

ϕ3 = −κφπ



 σ̃−1κ

(ω + ψm)(ω + ψm)
+

1−µw
1−µwχy

χpκ

(ω + ψλ)(ω + ψλ)
+

Ω0

i0 − rn



 , ψ3 = −ω.

As uk,0 is proportional to i0 − rn, for k = 1, 2, 3, and λ̂
0 is proportional to a linear combi-

nation of the uk,0, then λ̂
t = λe−ψλt(i0 − rn) = λu2,t, for some constant λ. If it − rn =

e−ψmt(i0 − rn) =, then λ = λ. We guess that λ = λ and verify that nominal interest

rates are exponentially decaying with rate ψm. The nominal interest rate is given by

it − rn =
3

∑
k=1

(δ + ψk)(ρ + ψk)− σ̃−1κ

(ω1 + ψk)(ω2 + ψk)
ϕkuk,t −

φπκχλ

(ω1 + ψλ)(ω2 + ψλ)
λu2,t.

Notice that (δ + ψk)(ρ + ψk)− σ̃−1κ = (ω + ψk)(ω + ψk), so the term multiplying u3,t is

equal to zero, as ψ3 = −ω. Using the fact that χλλ = 1−µw
1−µwχy

χp, the term multiplying u2,t

is also equal to zero. Finally, the term multiplying u1,t is equal to one, so it − rn = it − rn.

From the Taylor rule we have that ut = it − rn − φππt = it − rn − φππ
t , so π

t = πt.

If the nominal interest rate and λ̂t coincide in the two equilibria, then we must have

bp,t − bo,t = bp,t − bo,t. From the aggregate Euler equation, we obtain

yt = −
ˆ ∞

0
e−δ(s−t)(is − rn − π

s + χλλ̂
s )ds = −

ˆ ∞

0
e−δ(s−t)(is − rn − πs + χλλ̂s)ds = yt,

so yt = yt. Finally, if output, inflation, nominal interest rates, and the market-implied dis-

aster probability coincide in the two equilibria, from the intertemporal budget constraint

we must have
´ ∞

0 e−ρtτ
t dt =

´ ∞
0 e−ρtτtdt.
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C Derivations for Section 4

C.1 Bond pricing and forward curve

In this section, we solve for prices, yields, and forward rates of zero-coupon bonds of

different maturity. While in the main text we focused on the price of a single bond with

exponentially decaying coupons, we solve here for the entire yield and forward curves.

Let QB,t(h) denote the period t price of a nominal zero-coupon bond maturing at pe-

riod t + h, yB,t(h) denotes the corresponding yield on the bond, and fB,t(h) denotes the

instantaneous forward rate. The bond price satisfy the standard pricing condition

QB,t(h) = Et


ηt+h

ηt

Pt

Pt+h


, (C.1)

using the fact that ηt/Pt is the nominal SDF in this economy.

Stationary equilibrium. The price of the bond in the no-disaster state of the stationary

equilibrium is given by

QB(h) =
ˆ ∞

h
λe−λt∗e−ρshdt∗ +

ˆ h

0
λe−λt∗e−ρst∗


Cs

C∗
s

σ

e−r∗(h−t∗)dt∗ (C.2)

= e−ρh + (1 − e−λh)e−ρsh


Cs

C∗
s

σ

. (C.3)

while the price of the bond in the disaster state is simply Q∗
B(h) = e−ρsh. Notice that

´ ∞
0 e−ψLhP(h)dh =

1+Q∗
Lλ


Cs
C∗s

σ

ρ+ψL
= QL, so this is consistent with our derivation for QL.

The yield on the bond is given by

yB(h) = ρs + λ − 1
h

log


1 +


eλh − 1


Cs

C∗
s

σ
. (C.4)

Notice that limh→0 yB(h) = r∗n and limh→∞ yB(h) = ρ > r∗n, capturing the fact that the
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yield curve is upward-sloping.

The forward rate is given by

fB(h) = −∂ log QB(h)
∂h

= ρs −
λ


Cs
C∗

s

σ
− 1




eλh − 1

  Cs
C∗

s

σ
+ 1

. (C.5)

The linearized PDE. Let rB,t(h) denote the excess holding-period return on a bond ma-

turing h periods ahead conditional on no disaster:

rB,t(h) ≡
1

QB,t(h)


−∂QB,t(h)

∂h
+

∂QB,t(h)
∂t


− it. (C.6)

The Euler equation for the bond is given by

rB,t(h) = λt


Cs,t

C∗
s,t

σ
QB,t(h)− Q∗

B,t(h)
QB,t(h)

. (C.7)

Let qb,t(h) ≡ log QB,t(h)− log QB(h), then linearizing the equation above we obtain

− ∂qB,t(h)
∂h

+
∂qB,t(h)

∂t
= it − rn + rB(h)


λ̂t +

Q∗
B(h)

QB(h)− QB(h)∗
qb,t(h)


, (C.8)

where we used the assumption that rB(h)σcs,t is second-order.

From PDE to system of ODEs. Assuming that the nominal interest rate is exponentially

decaying, it − rn = e−ψmt(i0 − rn), we will guess-and-verify that the solution takes the

form:

qB,t(h) = χB,i(h)(it − rn) + χB,λ(h)λ̂t, (C.9)
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where χB,i(0) = χB,λ(0) = 0. Plugging the expression above into the PDE, we obtain

−χ′
B,i(h)(it − rn)− χ′

B,λ(h)λ̂t − ψmχB,i(h)(it − rn)− ψλχB,λ(h)λ̂t = (C.10)

it − rn + rB(h)λ̂t + λ


Cs

C∗
s

σ Q∗
B(h)

QB(h)

χB,i(h)(it − rn) + χB,λ(h)λ̂t


. (C.11)

The equation above has to hold for any values of i0 − rn and λ̂0, then we obtain a

system decoupled ODEs

−χ′
B,i(h)− ψmχB,i(h) = 1 + λ


Cs

C∗
s

σ Q∗
B(h)

QB(h)
χB,i(h) (C.12)

−χ′
B,λ(h)− ψλχB,λ(h) = rB(h) + λ


Cs

C∗
s

σ Q∗
B(h)

QB(h)
χB,i(h), (C.13)

given the initial conditions χB,i(0) = χB,λ(0) = 0, where

rB(h) = λ


Cs

C∗
s

σ (1 − e−λh)


Cs
C∗

s

σ
− 1



e−λh + (1 − e−λh)


Cs
C∗

s

σ ,
Q∗

B(h)
QB(h)

=
1

e−λh + (1 − e−λh)


Cs
C∗

s

σ . (C.14)

We can write the ODEs above as follows:

χ′
B,i(h) = −1 −


ψm + λ


Cs

C∗
s

σ Q∗
B(h)

QB(h)


χB,i(h) (C.15)

χ′
B,λ(h) = −rB(h)−


ψλ + λ


Cs

C∗
s

σ Q∗
B(h)

QB(h)


χB,i(h). (C.16)

The system above can easily solve numerically using a finite-differences scheme. Given

the bond prices, we can find the yield yB,t(h) = − 1
h log QB,t(h) = − 1

h log QB(h)− 1
h qB,t(h).

Let ŷB,t(h) denote the deviation of the yield on the bond from its value in the stationary

equilibrium. The forward rate is given by fB,t(h) = − ∂ log QB,t(h)
∂h = − log QB(h)

∂h − ∂qB,t(h)
∂h , so

f̂B,t(h) ≡ − ∂qB,t(h)
∂h denotes the deviation of the forward rate from its value in the station-

ary equilibrium.
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C.2 Cyclicality of transfers

In this section, we discuss the empirical plausibility of the countercyclicality of transfers

assumed in our baseline model. It is useful to map the response of transfers in our model

to the retention function of Heathcote et al. (2017), which has been shown to be able to

capture the degree of progressivity of the tax system observed in the United States.

Retention function. Let Yw,t =
Wt
Pt

Nw,t denote the pre-tax income of workers. Workers

consume their after-tax income, which is given by

Cw,t = ζY1−τ
w,t , (C.17)

where ζ captures the intercept of the retention function, and τ the curvature.

Linearizing the expression above around the stationary equilibrium, we obtain

cw,t = (1 − τ)(wt − pt + nw,t) = (1 − τ)(1 + φ)yt, (C.18)

using the fact that wt − pt = φyt and nw,t = yt.

The expression above relies on the assumption of sticky prices and flexible wages. In

the opposite case of sticky wages and flexible prices, consumption of workers would be

given by (see Appendix D.2)

cw,t = (1 − τ)yt, (C.19)

using the fact that wt − pt = 0 with sticky wages.

Numerical examples. Auclert, Rognlie and Straub (2018) adopt the value τ = 0.181, in

line with the estimates of Heathcote, Storesletten and Violante (2017). We have φ = 1 in

our baseline calibration, which gives χy = 1.64 for τ = 0.181. In contrast, in the version

of the model with sticky wages, we would have cw,t = (1 − τ)yt. Given τ = 0.181, this
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Figure C.1: Output decomposition for different values of χy.

implies χy = 0.82. This gives us a range of alternative values of χy to consider. Figure C.1

shows the impact of assuming different values of χy. The case χy = 0.8 gives very similar

results to our baseline calibration of χy = 1.0. Assuming χy = 1.6 amplifies the response

of output. The bulk of the amplification comes from the time-varying precautionary mo-

tive (52%) and the aggregate wealth effect (41%).

In the baseline model, the consumption of workers is given by

cw,t =




WNw

PCw
(1 + φ)

  
5.55

+
T′

w(Y)Y
Cw  
−4.55



 yt = χyyt. (C.20)

The numbers shown above correspond to the values under our baseline calibration. They

imply that a drop in GDP of 1% leads to a drop in 5.55% in pre-tax income. Transfers

increase by 4.55%, so overall consumption of workers drop by 1%. This strong coun-

tercyclicality of transfers is equivalent to a retention function with τ = 0.5, a coefficient

that is significantly larger than in standard calibrations. Assuming a weaker response of

transfers, consistent with a value of τ closer to the empirically relevant case, would imply

a larger drop in consumption, causing the amplification shown in Figure C.1. However,

this amplification relies on the (counterfactual) strong pro-cyclicality of wages. In the

more realistic case of sticky wages, we would obtain a value of χy less than one, which

implies a small dampening of the overall effect. Therefore, a version of the model with
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sticky wages generates dynamics in line with our baseline model assuming an empirically

plausible degree of countercyclicality of transfers.

C.3 Belief heterogeneity

Recall that Proposition 3 shows that the market-implied disaster probability is given by

λ̂t = e−ψλtλ̂0,

where

λ̂0 = λ(i0 − rn).

The persistence of the effect of monetary policy on the price of risk, ψλ, is governed by

the Uzawa preference parameter ξ. This parameter is related not to the degree of belief

heterogeneity but to the savers’ iMPCs. In particular, our calibration implies a half-life

for the iMPCs of four months, which is consistent with empirical values.

In contrast, λ is indeed connected to the degree of belief heterogeneity. However,

while belief heterogeneity is a necessary and sufficient condition for λ > 0, the actual re-

lationship between the two depends on the interaction of other parameters. In Appendix

A.3, we showed that

λ̂0 = σµc,oµc,p
λ

1
σ
p − λ

1
σ
o

λ
1
σ

ρ + ξ

χb,c
(bp,0 − bo,0),

where µc,j is the consumption share of savers of type j ∈ {o, p}, bj,0 is the change in the

value of their portfolio in period 0, and χb,c is a constant given by

χb,c = σµc,oµc,p
λ

1
σ
p − λ

1
σ
o

λ
1
σ

∑
k∈{L,E}

rk


Bk

o
Bo

−
Bk

p

Bp


+ µc,p

Co

Bo
+ µc,o

Cp

Bp
+

C∗
s (ρ − rn)

r∗nBs
.
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Moreover, we showed that the change in the initial value of the savers’ portfolio is given

by

bp,0 − bo,0 = ∑
k∈{L,E}


Bk

p

Bp
− Bk

o
Bo


qk,0.

Thus, besides the heterogeneity in beliefs between optimistic and pessimistic savers, there

are two other important parameters that determine λ̂0: the mass of optimistic savers, µo,

and the portfolio allocations in the stationary equilibrium. Because the stationary equi-

librium features only one risk factor (the disaster shock), the composition of the savers’

“risky” holdings, that is, BL
j and BE

j , are indeterminate. Naturally, optimistic agents are

more exposed to disaster risk in equilibrium, but this only determines their total holdings

of the aggregate risk factor, not the division between long-term bonds and stocks.

To simplify the calculations, we assume in the main text that optimistic and pessimistic

agents hold the same fraction of equity in their portfolio, with optimistic savers holding

proportionally more of the long-term bonds. This assumption implies that

bp,0 − bo,0 =


BL

p

Bp
− BL

o
Bo


qL,0.

Assuming that rLσcs,t = O(||it − rn||2), we get

qL,0 = − i0 − rn

ρ + ψL + ψm
− rLλ̂0

ρ + ψL + ψλ
,

and
BL

p

Bp
− BL

o
Bo

=
QL

QL − Q∗
L

Cs

Bs
R0,

where R0 = 1
λ


Cs
C∗s

 λ
1
σ
p −λ

1
σ
o

µo
µo+µp λ

1
σ
p +

µp
µo+µp λ

1
σ
o

. Plugging these into the expression for λ̂0 above gives

the expression for λ found in Proposition 3. If, instead, we assumed that
BE

p
Bp

∕= BE
o

Bo
, the cal-
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culations involved in solving for λ̂0 would be more complex. However, any combination

of equity and long-term bonds resulting in the same total portfolio risk would yield the

same reduced-form formulas. The only difference would be in the exact mapping between

λ and the degree of belief heterogeneity. Thus, to determine the degree of heterogene-

ity necessary to obtain our reduced-form calibration of λ, we consider the more general

case. In particular, we showed that, in general,

R0 =
QL − Q∗

L
QL

BL
o − BL

p

Cs
+

QE − Q∗
E

QE

BE
o − BE

p

Cs
.

Let α ≡ 1
R0

QL−Q∗
L

QL

BL
o −BL

p
Cs

. When α = 1, all the difference in the savers’ portfolios is given by

their holdings of long-term bonds. When α = 0, all the difference in the savers’ portfolios

is given by their holdings of equity.

To discipline the free parameters, we consider the mapping of the model to the data.

We interpret optimistic savers as representing the top 1% of the income distribution. This

population owns roughly 50% of all the corporate equities in the U.S. and earn around

26% of all income. Choosing parameters to match these moments, we get that, in the

model, the optimistic savers own 59% of the equities and earn 22% of all income. In

terms of the implications for belief heterogeneity, we find that optimistic savers believe

the disaster probability is less than 1bps per year, while pessimistic savers believe it is 7%.

More generally, Figure C.2 shows the implied belief of pessimistic savers for differ-

ent combinations of µo and α (the implied belief of the optimistic savers is always below

1bps). The values range from about 5.5% to more than 15%. For example, if we assumed,

as in the text, that savers only differ in their holdings of long-term bonds, and we in-

terpret the optimistic savers as the top 1% of the income distribution, the model implies

that pessimistic savers believe that the probability is slightly below 9% per year. The plot

shows that the belief of pessimistic savers is lowest when the difference in holdings of
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stocks is high, and when the fraction of optimistic savers in the economy is low. This

result is intuitive. The determination of λ depends on two variables: the degree of be-

lief heterogeneity and the redistribution across types after the monetary shock. Fixing a

target value for λ (to match the VAR evidence), there is some degree of substitutability

between these two dimensions. Since stock prices are more sensitive to a monetary shock

than bond prices, a higher fraction of stocks owned by optimistic savers implies a larger

redistribution after the shock. Hence, a lower degree of disagreement is necessary. Sim-

ilarly, a lower fraction of optimistic agents implies that wealth is more concentrated, so,

again, the same shock has a larger distributional impact.

Finally, it is worth noting that this exercise assumes that the entire movement in asset

prices can be explained by our channel, which is an extreme assumption. To address

this, we analyze next the sensitive of our results to changes in the calibrated value of λ.

For example, suppose we cut λ in half. This reduces the impact of monetary policy on

the 5-year yield and on stock prices by around 30%. In our preferred calibration (where

optimistic savers represent the top 1% of the income distribution and own roughly 50% of

the equities), we find an implied belief of pessimistic savers of 3.6% per year. Naturally,

this reduction in λ also implies a reduction in the effect of monetary policy on output.

On impact, output responds 35% less when λ is cut in half.

D Extensions

In this section, we discuss three different extensions of the baseline model. First, we in-

troduce wealthy hand-to-mouth agents into the model to capture the evidence in Kaplan

and Violante (2014). Second, we introduce capital into a simplified version of the model

and study how the risk-premium neutrality extends to this setting. Third, we consider a

version of the model with sticky wages instead of sticky prices.
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Figure C.2: Implied belief of pessimistic savers for different values of µo and α

D.1 Wealthy hand-to-mouth

Consider an extension of the model with wealthy hand-to-mouth agents. In particular,

we assume that there is a third type of savers who only holds stocks and never buys or

sell shares.5 This implies that we can write the amount invested in stocks as follows:

BE
r,t = BE

r
QE,t
QE

, where we used r to index the rich hand-to-mouth. Plugging Br,t = BE
r,t into

the flow budget constraint, we obtain the consumption of wealthy hand-to-mouth agents:

Cr,t = Πt
BE

r
QE

+ Th,t, (D.1)

where Πt denotes real profits and BE
r

QE
denotes the number of shares held by these savers.

Analogous to workers, we assume that Th,t = Th(Yt). Linearizing the expression above:

cr,t =
Y
Cr

BE
r

QE


1 − (1 − −1

p )(1 + φ)


yt +
Tr(Y)

Cr

YT′
r(Y)

Tr(Y)
yt ≡ χr

yyt. (D.2)

5In the context of models with a fixed cost to adjust the portfolio, this can be interpreted as the case
where the monetary shock is not large enough to move these agents outside their inaction region.
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Similarly, workers’ consumption is given by

Cw,t =
Wt

Pt
Nw,t + Tw,t ⇒ cw,t =

W
P

Nw

Cw
(1 + φ)yt +

Tw(Y)
Cw

YT′
w(Y)

Tw(Y)
yt ≡ χw

y yt. (D.3)

Define the average consumption of hand-to-mouth agents as Ch,t =
µr

µr+µw
Cr,t +

µw
µr+µw

Cw,t.

The market clearing condition for goods can be written as

µoCo,t + µpCp,t + µhCh,t = Yt, (D.4)

where µh ≡ µr + µh. Linearized consumption of hand-to-mouth agents is given by:

ch,t ≡
µwCw

µwCw + µrCr
cw,t +

µrCr

µwCw + µrCr
cr,t = χyy, (D.5)

where χy ≡ µwCw
µwCw+µrCr

χw
y + µrCr

µwCw+µrCr
χr

y.

The Euler equations for optimistic and pessimistic savers are unchanged, and the same

is true for the Phillips curve. The market clearing condition for goods takes the same

form as in the baseline model, with hand-to-moouth agents (rich and poor) playing the

role of workers. Hence, the equilibrium conditions describing the aggregate dynamics

are exactly the same as in the baseline model.

Introducing wealthy hand-to-mouth agents in the economy then changes the cyclical-

ity of income of the hand-to-mouth agents, given the behavior of taxes. However, condi-

tional on the value of χy, the economy behaves in the same way as our baseline economy.

This shows our results are robust to the introduction of wealhy hand-to-mouth agents.

D.2 Sticky wages

In the baseline model, we assumed prices are sticky and wages are fully flexible. In this

extension, we consider the opposite case where wages are sticky and prices are fully flexi-
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ble. To keep the discussion brief, we focus on the aspects of the extension that are different

from the baseline model.

D.2.1 Environment

Firms. To produce intermediate goods, firms combine a continuum of differentiated la-

bor inputs, indexed by k ∈ [0, µw], where µw denotes the mass of workers in the economy.

Firm i ∈ [0, 1] produces intermediate goods according to the production function:

Yi,t = AtµwNt(i), (D.6)

where Nt(i) is a CES aggregator of differentiated labor inputs:

Nt(i) =


1
µw

ˆ µw

0
Nk,t(i)

w−1
w dk

 w
w−1

, (D.7)

and Nk,t(i) denotes firm i’s demand for labor variety k ∈ [0, µw].

Prices are fully flexible, so the problem of the firm is given by

max
Pi,t,[Nk,t(i)]j∈[0,1]

Pi,tYi,t −
ˆ µw

0
Wk,tNk,t(i)dk, (D.8)

subject to Eq. (D.6), Eq. (D.7), and the demand for intermediate goods Yi,t =


Pi,t
Pt

−p
Yt.

The demand for labor variety k is given by

Nk,t(i) =


Wk,t

Wt

−w

Nt(i), (D.9)

where Wt is given by

Wt =


1

µw

ˆ µw

0
W1−w

k,t dk
 1

1−w
. (D.10)
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The price of intermediate good i is given by

Pi,t =
p

p − 1
Wt

At
. (D.11)

The aggregate demand for labor variety k is defined as Nk,t =
´ 1

0 Nk,t(i)di. Given all firms

solve identical problems, we have Pi,t = Pt and Nk,t(i) = Nk,t.

Workers and unions. There a continuum of workers indexed by k ∈ [0, µw]. Workers

are subject to a borrowing constraint, Bw
k,t ≥ −Dp, where Bw

k,t denotes the net worth of a

type-k worker. Workers are hand-to-mouth and their consumption is given by

Ck,t =
Wk,t

Pt
Nk,t + Tw,t. (D.12)

The wage Wk,t and the hours worked Nk,t are defined by a union. The union faces Rotem-

berg quadratic adjustment costs on wages. The union’s problem can be written as follows

Vw
k,t(Wj) = max

[Nk,z,πw
k,t]z≥t

Et


ˆ t∗

t
e−ρw(z−t)


C1−σ

k,z

1 − σ
−

N1+φ
k,z

1 + φ
− ϕ

2
(πw

k,s)
2


dz + e−ρw(t∗−t)V∗,w

k,t∗ (W
∗
k,t∗)


,

(D.13)

subject to

Ẇk,t = πw
k,tWk,t, Nk,t =


Wk,t

Wt

−w

Nt, Ck,t =
Wk,t

Pt
Nk,t + Tw,t, (D.14)

where W∗
k,t∗ = Wk,t∗ , and ϕ denotes the adjustment cost parameter.

The HJB equation for this problem is given by

ρwVw
k,t =

C1−σ
k,t

1 − σ
−

N1+φ
k,t

1 + φ
− ϕ

2
(πw

k,t)
2 +

E[dVw
k,t]

dt
, (D.15)
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where
E[dVw

k,t]

dt
=

∂Vw
k,t

∂t
+

∂Vw
k,t

∂Wj
πw

k,tWk,t + λt


V∗,w

k,t − Vw
k,t


. (D.16)

The first-order condition for this problem is

ϕπw
k,t =

∂Vw
k,t

∂Wk,t
Wk,t. (D.17)

The wage Phillips curve. The envelope condition is given by

ρw
∂Vw

k,t

∂Wk,t
= C−σ

k,t (1 − )
Wt

Pt

Nt

Wk,t


Wk,t

Wt

1−

+ Nφ
k,t


Wk,t

Wt

− Nt

Wk,t
+

∂Vw
k,t

∂Wj
πw

k,t

+
∂2Vw

k,t

∂t∂Wk,t
+

∂2Vw
k,t

∂W2
k,t

πw
k,tWk,t + λt


∂V∗,w

k,t

∂W∗
k,t

−
∂Vw

k,t

∂Wk,t


. (D.18)

Differentiating the first-order condition for πw
t with respect to time, we obtain

ϕπ̇w
j,t =

∂Vw
k,t

∂Wk,t
πw

k,tWk,t +


∂2Vw

k,t

∂t∂Wk,t
+

∂2Vw
k,t

∂W2
k,t

πw
k,tWk,t


Wk,t (D.19)

Multiplying the envelope condition by Wk,t and using the expression above, we obtain

ρw ϕπw
k,t = C−σ

k,t (1 − )
Wt

Pt
Nt


Wk,t

Wt

1−

+ Nφ
k,t


Wk,t

Wt

−

Nt + ϕπ̇w
j,t + λt ϕ


π∗,w

k,t − πw
k,t


.

(D.20)

Assuming all unions have the same initial condition, they will choose the same path of

wages, so Wk,t = Wt and πw
k,t = πw

t . This implies that the consumption and hours are

equalized across workers: Ck,t = Cw,t and Nk,t = Nw,t. Rearranging the expression above,
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we arrive at the New Keynesian Wage Phillips curve:

π̇w
t = (ρw + λt)π

w
t − ϕ−1(w − 1)


w

w − 1
Cσ

w,tN
φ
w,t

Wt/Pt
− 1


C−σ

w,t
Wt

Pt
Nw,t, (D.21)

where we assumed that the monetary authority implements π∗,w
t = 0.

In the no-disaster state, we have Wt
Pt

= (1 − −1
p )A, so wage inflation equals price

inflation, πw
t = πt.

Savers, government, and market clearing. The savers’ problem and the government

policies are unchanged relative to the baseline model. The market clearing conditions for

goods and labor are given by

∑
j∈{o,p,w}

µjCj,t =

ˆ 1

0
Yi,tdi,

ˆ 1

0
Nk,t(i)di = Nk,t, (D.22)

for k ∈ [0, µw]. The market clearing condition for assets are given by

∑
j∈{o,p,w}

µjBS
j,t = 0, ∑

j∈{o,p,w}
µjBL

j,t = DG,t, ∑
j∈{o,p,w}

µjBE
j,t = QE,t. (D.23)

Stationary equilibrium. In a stationary equilibrium, all variables are constant condi-

tional on the aggregate state (disaster or no-disaster). We assume that Tw is such that

Cw = Y. For wages and the price level to be constant, the following condition must be

satisfied

w

w − 1
YσNφ

w

(1 − −1
p )A

= 1 ⇒ Nw =


(1 − −1

w )(1 − −1
p )

A1−σ

µσ
w

 1
σ+φ

, (D.24)
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where we used the fact that W
P = (1 − −1

p )A. Ouput is then given by

Y =

(1 − −1

p )(1 − −1
w )

 1
σ+φ A

1+φ
σ+φ µ

φ
σ+φ
w . (D.25)

An analogous condition holds in the disaster state:

Y∗ =

(1 − −1

p )(1 − −1
w )

 1
σ+φ

(A∗)
1+φ
σ+φ µ

φ
σ+φ
w . (D.26)

Worker’s consumption is given by

Cw =
(1 − −1

p )

µw
Y + Tw. (D.27)

Hence, Tw > 0 if and only if 1 − −1
p < µw. Profits are given by

Π = Y − W
P

µwNw = −1
p Y, (D.28)

and a similar condition holds in the disaster state. The determination of the savers’ con-

sumption, natural rate, term spread, and equity premium are similar to the one in the

baseline model.

D.2.2 Wage Phillips Curve

Let’s compute a first-order approximation around the stationary equilibrium. First, the

log-linearized real wage is given by wt − pt = 0. The log-linearized production function

gives us yt = nw,t. The consumption of workers is given by

cw,t =
W
P

Nw

Cw
yt +

Y
Cw

T′
w(Y)yt = χyyt, (D.29)

where χy ≡ W
P

Nw
Cw

+ Y
Cw

T′
w(Y).
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The New Keynesian Phillips curve is given by

π̇t = ρπt − κyt, (D.30)

where κ ≡ ϕ−1(w − 1)(1− −1
p )ANw

Cσ
w


σχy + φ


. We assumed that ρw = ρs, so ρw + λ = ρ.

Euler equations are the same as in the baseline model. Conditional on χy and κ, the

aggregate implications of the model with sticky wages are the same as with sticky prices.

Cyclicality of profits. One important distinction between the model with sticky prices

and sticky wages regards the cyclicality of profits. Profits are given by

Πt = Yt −
Wt

Pt
Nt ⇒ Π̂t = yt −

WN
PY

(wt − pt + nt). (D.31)

Using the fact that W
P N = (1 − −1

p )Y, we obtain that profits are given by

Π̂t = −1
p yt. (D.32)

In the baseline model, profits are instead given by

Π̂t =

1 − (1 − −1

p )(1 + φ)


yt, (D.33)

as wt − pt = φnt in constrast to the sticky-wages model. Hence, as long as φ > 1
p−1 ,

profits are countercyclical.

D.3 Risk-premium neutrality in a model with capital

We consider next a version of the model with endogenous investment in physical capital.

To simplify the exposition, we consider a setting with a representative agent, but we allow

the monetary authority to directly affect the subjective probability of disaster in a way
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analogous to the mechanism in our heterogeneous-agent economy. We also consider the

effects of an uncertainty shock and monetary policy reacts endogenously to the shock.

We will use this economy as a laboratory to study the extent our risk-premium neutrality

result extends to an economy with capital.

D.3.1 Environment

Households. The household’s problem can be written as follows

Vt(Bt) = max
[Cz,BL

z ,BE
z ]

Et


ˆ t∗

t
e−ρs(z−t)


C1−σ

z
1 − σ

− N1+φ
z

1 + φ


dz + e−ρs(t∗−t)V∗

t∗(B∗
t∗)


, (D.34)

subject to

dBt =


(it − πt)Bt + rL,tBL

t + rE,tBE
t + Tt + (1 + τn

t )
Wt

Pt
Nt − (1 + τc

t )Ct


dt+[B∗

t − Bt]dNt,

(D.35)

where B∗
t = Bt + BL

t
Q∗

L,t−QL,t
QL,t

+ BE
t

Q∗
E,t−QE,t

QE,t
.

The HJB equation for this problem is given by

ρsVt = max
Ct,Nt,BL

t ,BE
t

C1−σ
t

1 − σ
− N1+φ

t
1 + φ

+
∂Vt

∂t
+ λt [V∗

t − Vt]

+
∂Vt

∂Bt


(it − πt)Bt + rL,tBL

t + rE,tBE
t + Tt + (1 + τn

t )
Wt

Pt
Nt − (1 + τc

t )Ct


. (D.36)

The first-order conditions for this problem are given by

C−σ
t =

∂Vt

∂Bt
(1 + τc

t ), Nφ
t =

∂Vt

∂Bt

Wt

Pt
(1 + τn

t ),
∂Vt

∂Bt
rk,t =

∂V∗
t

∂B∗
t

Qk,t − Q∗
k,t

Qk,t
, (D.37)

for k ∈ {L, E}.

There is no uncertainty in a disaster state, so r∗L,t = r∗E,t = 0 in equilibrium. The HJB
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equation in the disaster equation is given by

ρ∗s V∗
t = max

C∗
t ,N∗

t

(C∗
t )

1−σ

1 − σ
− (N∗

t )
1+φ

1 + φ
+

∂V∗
t

∂t
+

∂V∗
t

∂B∗
t


(i∗t − π∗

t )B∗
t + T∗

t + (1 + τ∗,n
t )

W∗
t

P∗
t

N∗
t − (1 + τc,∗

t )C∗
t


.

The optimality conditions are given by

(C∗
t )

−σ =
∂V∗

t
∂B∗

t
(1 + τc,∗

t ), (N∗
t )

φ =
∂V∗

t
∂B∗

t

W∗
t

P∗
t
(1 + τ∗,n

t ). (D.38)

The envelope condition is given by

ρs
∂Vt

∂Bt
=

∂Vt

∂Bt
(it − πt) +

Et[d


∂Vt
∂Bt


]

dt
. (D.39)

Using the optimality condition for consumption, and assuming τc
t = τc,∗

t so there is no

jump on the consumption tax rate, we obtain the Euler equation for short-term bonds:

Ċt

Ct
= σ−1(it − πt − τ̇c

t − ρs) +
λt

σ


Ct

C∗
t

σ

− 1


. (D.40)

Using the envelope condition in the disaster state, we obtain the corresponding Euler

equation:
Ċ∗

t
C∗

t
= σ−1(i∗t − π∗

t − ρ∗s ), (D.41)

where we assumed that τ̇c,∗
t = 0.

The pricing condition for the long-term bonds and equities are given by

rk,t = λt


Ct

C∗
t

σ Qk,t − Q∗
k,t

Qk,t
. (D.42)

We will assume τc
t = τn

t and τc,∗
t = τ∗,n

t . The labor supply condition in the two state
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are then given by
Wt

Pt
= Cσ

t Nφ
t ,

W∗
t

P∗
t

= (C∗
t )

σ(N∗
t )

φ. (D.43)

Firms. Firm i produces intermediate goods according to the production technology:

Yi,t = AtKα
i,tN

1−α
i,t . (D.44)

The firm is subject to quadratic price adjustment costs 0.5ϕπ2
i,s. The firm is also subject

to investment adjustment costs. We assume that the firm pays an investment tax τK
t . We

can then write the firm’s problem as follows:

Qi,t(Pi, Ki) = max
[πi,s ,ιi,s ]s≥t

Et


ˆ t∗

t

ηs

ηt


Pis
Ps

Yi,s −
Ws

Ps
Ni,s − (1 + τK

t )ιi,tKi,t −
ϕ

2
π2

i,s + Tf ,t


ds +

η∗
t

ηt
Q∗

i,t(P∗
i,t∗ , K∗

i,t∗)


,

(D.45)

subject to

Ṗi,t = πi,tPi,t,
dKi,t

Ki,t
= [Φ(ιi,t)− δ] dt − ζKdNt, Yi,t =


Pi,t

Pt

−

Yt, Ni,t =


Yi,t

AtKα
i,t

 1
1−α

,

(D.46)

where Φ(·) is an increasing and concave function, P∗
i,t∗ = Pi,t∗ , and K∗

i,t = (1 − ζK)Ki,t∗ .

Notice that, to achieve a production level Yi,t given the capital stock Ki,t, the firm needs

Ni,t =


Yi,t
AtKα

i,t

 1
1−α units of labor. The lump-sum transfer Tf ,t corresponds to the value

of the price adjustment costs plus the government’s revenue from the investment tax.

Therefore, the price adjustment costs does not represent a real resource cost. The lump-

sum transfer also includes the revenue from the investment tax, so the investment tax

allows the government to influence investment, but it does not represent a net source of

fiscal revenue.
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The HJB equation for this problem is given by

0 = max
πi,t,ιi,t

ηt



Pi,t

Pt
Yi,t −

Wt

Pt


Yi,t

AtKα
i,t

 1
1−α

− (1 + τK
t )ιi,tKi,t −

ϕ

2
π2

i,t + Tf ,t



+ Et[d(ηtQi,t)],

(D.47)

where

Et [d(ηtQi,t)]

ηtdt
= −(it −πt)Qi,t +

∂Qi,t

∂Pi,t
πi,tPi,t +

∂Qi,t

∂Ki,t
(Φ(ιi,t)− δ)Ki,t +

∂Qi,t

∂t
+λt

η∗
t

ηt


Q∗

i,t − Qi,t


.

(D.48)

The first-order conditions for this problem are given by

∂Qi,t

∂Ki,t
Φ′(ιi,t) = 1 + τK

t , ϕπi,t =
∂Qi,t

∂Pi,t
Pi,t. (D.49)

New Keynesian Phillips Curve. The envelope condition with respect to Pi,t is given by



(1 − )


Pi,t

Pt

1−

Yt +


1 − α

Wt

Pt


Pi,t

Pt

− 
1−α


Yt

AtKα
i,t

 1
1−α



 1
Pi,t

− (it − πt)
∂Qi,t

∂Pi,t
+

∂Qi,t

∂Pi,t
πi,t

+
∂2Qi,t

∂P2
i,t

πi,tPi,t +
∂2Qi,t

∂Ki,t∂Pi,t
(Φ(ιi,t)− δ)Ki,t +

∂2Qi,t

∂t∂Pi,t
+ λt

η∗
t

ηt


∂Q∗

i,t

∂P∗
i,t

− ∂Qi,t

∂Pi,t


. (D.50)

Differentiating the first-order condition for the price change with respect to time, we

obtain

ϕπ̇i,t =
∂Qi,t

∂Pi,t
πi,tPi,t +


∂2Qi,t

∂P2
i,t

πi,tPi,t +
∂2Qi,t

∂Pi,t∂Ki,t
(Φ(ιi,t − δ)Ki,t +

∂Qi,t

∂t∂Pi,t


Pi,t (D.51)
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Multiplying the envelope condition by Pi,t and using the expression above, we obtain

π̇i,t = (it −πt)πi,t −λt
η∗

t
ηt


π∗

i,t − πi,t

− ϕ−1



(1 − )


Pi,t

Pt

1−

Yt +


1 − α

Wt

Pt


Pi,t

Pt

− 
1−α


Yt

AtKα
i,t

 1
1−α



 .

(D.52)

In a symmetric equilibrium, πi,t = πt, Pi,t = Pt, and Ki,t = Kt, which gives us the

non-linear New Keynesian Phillips curve

π̇t = (it − πt + λt
η∗

t
ηt
)πt − ϕ−1( − 1)




 − 1
Wt/Pt

1 − α

Nt

Yt
− 1


Yt, (D.53)

where we assumed that the central bank implements π∗
t = 0 for all t.

Optimal investment. The envelope condition for capital is given by

Wt

Pt

αK−1
i,t

1 − α


Yi,t

AtKα
i,t

 1
1−α

− (1 + τK
t )ιi,t + qi,t(Φ(ιi,t)− δ)− ζKλt

η∗
t

ηt
q∗i,t +

E[d(ηtqi,t)]

ηtdt
= 0,

(D.54)

where qi,t ≡
∂Qi,t
∂Ki,t

corresponds to marginal q and E[d(ηtqi,t)]
ηtdt is given by

E[d(ηtqi,t)]

ηtdt
= −(it − πt)qi,t + q̇i,t + λt

η∗
t

ηt
[q∗i,t − qi,t]. (D.55)

Investment is given by

Φ′(ιi,t) = (1 + τK
t )q

−1
i,t . (D.56)

Government. The government’s flow budget constraint in the no-disaster is given by

dDG,t =


(it − πt + rL,t)DG,t + Tt + τn

t
Wt

Pt
Nt − τc

t Ct


dt +


D∗

G,t − DG,t


dNt, (D.57)
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where D∗
G,t = DG,t

Q∗
L,t

QL,t
. The government is subject to a No-Ponzi condition limT→∞ Et [ηTDG,T] ≤

0, where DG,t denotes the real value of government debt.

In the no-disaster state, the monetary rule is given by

it = rn + φnπt + ut, (D.58)

and the monetary rule in the disaster state is given by i∗t = r∗n + φππ∗
t .

Disaster probability. We assume that the disaster probability is given by λt = λeλ̂t ,

where λ̂t is given by

λ̂t = e−ψλtλ̂0. (D.59)

We will consider two different versions of the model. In the monetary shock version, we

assume that ut is exogenously given and λ̂0 reacts to the nominal interest rate:

λ̂0 = λ(i0 − rn). (D.60)

This captures in reduced-form the main mechanism in our baseline model. In the uncertainty-

shock version, we assume that λ̂0 is exogenously given and ut reacts to the uncertainty

shock.

Market clearing. The market clearing conditions are given by

Ct =

ˆ 1

0
(Yi,t − ιi,tKi,t)di,

ˆ 1

0
Ni,tdi = Nt, BS

t = 0, BL
t = DG,t, BE

t = QE,t.

(D.61)
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D.3.2 Stationary equilibrium

In a stationary equilibrium, all variables are constant conditional on the aggregate state

(disaster or no-disaster). For the price level to be constant, the following condition must

be satisfied



 − 1
W
P

Y−1

1 − α


Y

AKα

 1
1−α

= 1 ⇒ W
P

= (1 − −1)(1 − α)AKαN−α. (D.62)

The labor supply condition is given by W
P = ν 1+τc

1+τn CσNφ. We assume that τc = τn =

τK = τc,∗ = τ∗,n = τk,∗ = 0. Consumption in the stationary equilibrium is given by

C = AKαN1−α − δK (D.63)

Combining the labor supply condition with the labor demand derived above, we obtain


AKαN1−α − δK

σ
Nφ = (1 − −1)(1 − α)AKαN−α. (D.64)

For capital to be constant, the following condition must be satisfied:

Φ(ι) = δ ⇒ ι = Φ−1(δ) (D.65)

The optimality condition for investment is given by

Φ′(ι) = 1/q ⇒ q = [Φ′(Φ−1(δ))]−1. (D.66)

Similarly, we have that ι∗ = ι and q = q∗.

The pricing condition for q is given by

α

1 − α

W
P

N
K

− ι − rnq − ζKλ
η∗

η
q∗ = 0 (D.67)
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In the disaster state, this condition simplifies to

α

1 − α

W∗

P∗
N∗

K∗ − ι∗ − r∗nq∗ = 0 (D.68)

Disaster state. The natural rate in the disaster is given by r∗n = ρ∗s . We can then use the

expression above to solve for N∗/K∗:

N∗ = K∗


ι∗ + r∗nq∗

αA∗(1 − −1)

 1
1−α

. (D.69)

We can then use the equation equation labor supply and labor demand to obtain K∗:

K∗ = (A∗)
(1+φ)

(1−α)(σ+φ)




(1 − −1)(1 − α)

(ι∗+r∗nq∗)
α(1−−1)

− δ
σ





1
φ+σ 

ι∗ + r∗nq∗

α(1 − −1)

− α+φ
(1−α)(φ+σ)

. (D.70)

Labor supply is given by

N∗ = (A∗)
(1−σ)

(1−α)(σ+φ)




(1 − −1)(1 − α)

(ι∗+r∗nq∗)
α(1−−1)

− δ
σ





1
φ+σ 

ι∗ + r∗nq∗

α(1 − −1)

 σ−α
(1−α)(φ+σ)

. (D.71)

Output is given by

Y∗ = (A∗)
(1+φ)

(1−α)(σ+φ)




(1 − −1)(1 − α)

(ι∗+r∗nq∗)
α(1−−1)

− δ
σ





1
φ+σ 

ι∗ + r∗nq∗

α(1 − −1)

 σ−α
(φ+σ)

− α(α+φ)
(1−α)(φ+σ)

(D.72)

Consumption in the disaster state is given by

C∗ = K∗


ι∗ + r∗nq∗

α(1 − −1)
− δ


. (D.73)
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No-disaster state. The natural rate in the no-disaster state is given by

rn = ρs − λ


C
C∗

σ

− 1


. (D.74)

Labor is given by

N = K


ι + rqq
αA(1 − −1)

 1
1−α

, (D.75)

using the fact that q∗ = q, where rq is given by

rq ≡ rn + ζKλ
η∗

η
= ρs + λ


1 − (1 − ζK)


C
C∗

σ
. (D.76)

We are going to construct an equilibrium where consumption drops by the same

amount as capital in a disaster, so C∗ = (1 − ζK)C. In this case, the discount rate for

q is given by

rq = ρs + λ

1 − (1 − ζK)

1−σ


(D.77)

Consumption is given by

C = K


ι + rqq
α(1 − −1)

− δ


(D.78)

Combining the expression for consumption with the expression for the rn, we can solve

for the real rate as a function of the capital stock rn(K). The capital stock is determined

by the condition

K = A
(1+φ)

(1−α)(σ+φ)




(1 − −1)(1 − α)


(ι+rqq)
α(1−−1)

− δ
σ





1
φ+σ 

ι + rqq
α(1 − −1)

− α+φ
(1−α)(φ+σ)

. (D.79)

Let ζA ≡ 1 − A∗
A and assume that rq = r∗n, so K∗ = (1 − ζA)

1+φ
(1−α)(σ+φ) K. We assume
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that 1 − ζK = (1 − ζA)
1+φ

(1−α)(σ+φ) , so capital jumps immediately to its steady state level.

Consumption and output drop by the same amount as capital in a disaster, while labor

units will be constant if σ = 1.

In this scenario, equity prices also drop by the same amount as aggregate output.

Equity prices in the disaster state are given by

Q∗
E =

Π∗

r∗n
=


1 − (1 − −1)(1 − α)− δ

 Y∗

r∗n
. (D.80)

Profits satisfy the relationship Π∗ = (1 − ζK)Π. Then, Q∗
E = (1 − ζK)

Π
r∗n

. If Q∗
E = (1 −

ζK)QE, then QE satisfy the condition

Π
QE

= rn + λ(1 − ζK)
−σζK ⇒ QE =

Π
rq

. (D.81)

Hence, Q∗
E = (1 − ζK)QE if rq = r∗n, as assumed above. This implies that rE = λ(1 −

ζK)
−σζK. The price of the long-term bond satisfies the conditinos:

Q∗
E =

1
r∗n + ψL

=
ρ + ψL

ρ + ψL + λ(1 − ζK)−σζK
QE. (D.82)

Then, the term spread is given by rL = λ(1 − ζK)
−σ λ(1−ζK)

−σζK
ρ+ψL+λ(1−ζK)−σζK

D.3.3 Log-linear dynamics

Wages and aggregate output. Let’s compute a first-order approximation around the sta-

tionary equilibrium. First, the log-linearized labor supply condition can be written as

wt − pt = φnt + σct. (D.83)
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Log-linearizing the production function, we obtain

yt = αkt + (1 − α)nt. (D.84)

Log-linearizing the market clearing condition for goods, we obtain

yt = ςcct + ςi(ι̂t + kt), (D.85)

given ι̂t ≡ log ιt/ι, where ςc ≡ C
Y and ςi =

ιK
Y .

Euler equations. The linearized Euler equation for short-term bonds can be written as

follows:

ċt = σ−1(it − πt − rn − ˙̂τc
t ) + δ(ct − c∗t ) + χcλλ̂t, (D.86)

where χcλ ≡ λ
σ


C
C∗

σ
− 1


and δ ≡ λ


C
C∗

σ
, and δ = σχcτ. The corresponding equation

in the disaster state is given by

ċ∗t = σ−1(i∗t − r∗n) (D.87)

Linearizing the Euler equation for the risky assets, we obtain

rk,t − rk = rk


λ̂t + σ(ct − c∗t )−

Q∗
k

Qk − Q∗
k
(q∗k,t − qk,t)


. (D.88)

The pricing condition for long-term bonds is given by

− 1
QL

qL,t + q̇L,t − (it − rn) = rL


λ̂t + σ(ct − c∗t )−

Q∗
L

QL − Q∗
L
(q∗L,t − qL,t)


. (D.89)

Rearranging the expression above, we obtain

q̇L,t = (ρ + ψL)qL,t + it − rn + rL


λ̂t + σ(ct − c∗t )−

Q∗
L

QL − Q∗
L

q∗L,t


. (D.90)
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Similarly, the pricing condition for equities is given by

Π
QE

(Π̂t − qE,t) + q̇E,t − (it − πt − rn) = rE


λ̂t + σ(ct − c∗t )−

Q∗
E

QE − Q∗
E
(q∗E,t − qE,t)


.

(D.91)

Rearranging the expression above, we obtain

q̇E,t = ρqE,t −
Π
QE

Π̂t + it − πt − rn + rE


λ̂t + σ(ct − c∗t )−

Q∗
E

QE − Q∗
E

q∗E,t


. (D.92)

Investment. Linearizing the optimality condition for investment, we obtain

ι̂t = χιqq̂t, (D.93)

where χιq ≡ −


Φ′′(ι)ι
Φ′(ι)

−1
> 0, and we define q̂t ≡ log qt/q

1+τK
t

. Notice that our definition

of q̂t includes the effect of the investment tax, which is the relevant variable to determine

the investment rate.

Phillips curve. The NKPC can be written as

π̇t =


rn + λ

η∗

η


πt − ϕ−1( − 1) [(α + φ)nt + σct − αkt]Y. (D.94)

Combining the expression above with the production function, we obtain

π̇t = (ρs + λ)πt − ϕ−1( − 1)


α + φ

1 − α
yt + σct −

α(1 + φ)

1 − α
kt


Y. (D.95)

Using the market clearing condition for goods, we obtain

π̇t = (ρs + λ)πt − κ

ct + ωqq̂t − ωkkt


, (D.96)

where κ ≡ ( − 1) ςc(α+φ)+σ(1−α)
1−α

Y
ϕ , ωq ≡

ςi(α+φ)χιq
ςc(α+φ)+σ(1−α)

, and ωk ≡ αςc+(α−ςi)φ
ςc(α+φ)+σ(1−α)

.
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We assume the monetary authority implements zero inflation in the disaster state, so

the following condition must be satisfied:

c∗t = ωkk∗t − ωqq̂∗t . (D.97)

Marginal q. The pricing condition for qt is given by

α

1 − α

Wt

Pt

Nt

Kt

1
qt

− (1 + τK
t )

ιt
qt

+ Φ(ιt)− δ − (it − πt) +
q̇t

qt
+ λt

η∗
t

ηt

q∗t (1 − ζK)− qt

qt
= 0.

(D.98)

Linearizing the expression above, we obtain

α

1 − α

WN
PKq

(wt − pt + nt − kt − (q̂t + τ̂K
t ))−

ι

q
(ι̂t − q̂t) + Φ′(ι)ιι̂t − (it − πt − rn) + ˙̂qt + ˙̂τK

t

(D.99)

− λ


C
C∗

σ 
ζK


λ̂t + σ(ct − c∗t )


+ (1 − ζK)(q̂t + τ̂K

t − q̂∗t )

= 0 (D.100)

Rearranging the expression above, and using the optimality condition for investment,

we obtain

˙̂qt = (it −πt − rn − ˙̂τK
t )+χqqq̂t +χqcct + χ̃qkkt +χqλλ̂t +χqτ τ̂K

t +χqq∗ q̂∗t +χqc∗c∗t , (D.101)
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where

χqq = λ


C
C∗

σ

(1 − ζK) +
ι

q
(χιq − 1) +

α

1 − α

WN
PKq


1 − ςi(1 + φ)

1 − α
χιq


− Φ′(ι)ιχιq

(D.102)

χqc = − α

1 − α

WN
PKq


σ +

ςc(1 + φ)

1 − α


+ λ


C
C∗

σ

ζKσ (D.103)

χ̃qk = − α

1 − α

WN
PKq


ςi(1 + φ)

1 − α
− 1


(D.104)

χqλ = λ


C
C∗

σ

ζK (D.105)

χqτ =
α

1 − α

WN
PKq

+ λ


C
C∗

σ

(1 − ζK) (D.106)

χqq∗ = −λ


C
C∗

σ

(1 − ζK) (D.107)

χqc∗ = −λ


C
C∗

σ

ζKσ. (D.108)

The corresponding equation in the disaster state is given by

˙̂q∗t = (i∗t − r∗n) + χqcc∗t + χ̃qkk∗t + χq∗q∗ q̂∗t , (D.109)

where χq∗q∗ = χqq − λ


C
C∗

σ
(1 − ζK).

The law of motion of capital is given by

˙̂kt = χkqq̂t, ˙̂k∗t = χkqq̂∗t , (D.110)

where χkq ≡ Φ′(ι)ιχιq.

Using the expression for c∗t and for i∗t , we obtain

˙̂q∗t = σ(ωkχkq ˙̂q∗t − ωq ˙̂q∗t ) + χqc(ωkk∗t − ωqq̂∗t ) + χ̃qkk∗t + χq∗q∗ q̂∗t . (D.111)
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Rearranging the expression above, we obtain




˙̂q∗t
k̇∗t



 =



χ̃q∗q∗ χ̃q∗k∗

χ̃k∗q∗ 0







q̂∗t
k∗t



 , (D.112)

given k∗t0
= kt0 , where

χ̃q∗q∗ ≡
χq∗q∗ − χqcωq

1 + σ(ωq − ωkχkq)
, χ̃q∗k∗ ≡

χqcωk + χ̃qk

1 + σ(ωq − ωkχkq)
. (D.113)

Assuming that the matrix above has a positive and a negative eigenvalue, the dynamic

system above has a unique bounded solution given by k∗t = e−ψk(t−t0)k∗t0
and q̂∗t = ωq∗k∗e−ψk(t−t0)k∗t0

,

where ωq∗k∗ is a constant that can be derived from the eigenvector associated with the neg-

ative eigenvalue. Similarly, we can write consumption in the disaster state as c∗t = ωc∗k∗k∗t .

We can then write the dynamics of q̂t in the no-disaster state as follows:

˙̂qt = (it − πt − rn − ˙̂τK
t ) + χqqq̂t + χqcct + χqkkt + χqλλ̂t + χqτ τ̂K

t , (D.114)

where χqk ≡ χ̃qk + χqq∗ωq∗k∗ + χqc∗ωc∗k∗ , using the fact that k∗t∗ = kt∗ .

D.3.4 Risk-premium neutrality

The dynamic system describing the evolution of the equilibrium variables in the no-

disaster state is given by





ċt

π̇t

˙̂qt

k̇t




=





δ σ−1(φπ − 1) 0 ωck

−κ ρ −κωq κωk

χqc φπ − 1 χqq χqk

0 0 χkq 0









ct

πt

q̂t

kt




+





χcλλ̂t + σ−1(ut − ˙̂τc
t )

0

χqλλ̂t + χqτ τ̂K
t + ut − ˙̂τK

t

0




,

(D.115)
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given k0, where ωck ≡ −δωc∗k∗ . Notice that the system is independent of λ̂t if the follow-

ing conditions are satified:

˙̂τc
t = σχcλλ̂t, ˙̂τK

t = χqλλ̂t + χqτ τ̂K
t . (D.116)

Flexible-price allocation. Consider next the flexible-price allocation. We focus on the

case where consumption and investment taxes are set to zero. Under flexible prices, con-

sumption is given by

ct = ωkkt − ωqq̂t. (D.117)

The real rate is given by

it − πt − rn = σ

ωk k̇t − ωq ˙̂qt − δ(ωkkt − ωqq̂t)− ωckkt − χcλλ̂t


(D.118)

In this case, marginal q evolves according to

˙̂qt = (it − πt − rn) + χqqq̂t + χqcct + χqkkt + χqλλ̂t

= χFP
qq q̂t + χFP

qk kt +

χqλ − σχcλ


λ̂t, (D.119)

where χFP
qq and χFP

qk capture the dependence of q̂t on q̂t and kt under flexible prices. The

coefficient on λ̂t is given by

χqλ − σχcλ = λ(1 − ζK)
−σζK − λ


(1 − ζK)

−σ − 1


(D.120)

= λ

1 − (1 − ζK)

1−σ


. (D.121)

In the case of a unit EIS, σ = 1, the coefficient on λ̂t is equal to zero. Therefore, the

flexible price solution to capital and marginal q are simply kt = q̂t = 0. In this case, the
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real rate is given by

it − rn = −λ(1 − ζK)
−1ζKλ̂t. (D.122)

Equity prices are constant, qE,t = 0, so the equity premium is given by

rE,t − rE = λ(1 − ζK)
−1ζKλ̂t. (D.123)

The price of long-term bonds satisfy the condition:

qL,0 = [rE − rL]

ˆ ∞

0
e−(ρ+ψL)tλ̂tdt, (D.124)

where it can be shown that rE > rL.

The role of interest rate rule. We consider next the role of the interest rate rule in more

detail. Assume that the monetary policy rule now responds to changes in λ̂t, that, it is

now given by

it = rn + φππt + φλλ̂t + ut, (D.125)

for some φλ ∈ R. We assume that φπ is such that the equilibrium is locally unique.

Consider again the system (D.115), setting all taxes to zero. The system of equations

can then be written as

ċt = δct + σ−1 (φπ − 1)πt + ωckkt +


σ−1φλ + χcλ


λ̂t + σ−1ut, (D.126)

π̇t = −κct + ρπt − κωq + κωkkt, (D.127)

˙̂qt = χqcct + (φπ − 1)πt + χqqq̂t + χqkkt +

φλ + χqλ


λ̂t + ut, (D.128)

k̇t = χkqq̂t, (D.129)

where χcλ = λ
σ


C
C∗

σ
− 1


, χqλ = λ


C
C∗

σ
ζK, and ζK = 1 − C∗

C . It is immediate to see
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that if σ = 1 and φλ = −χqλ, the system of equations characterizing the equilibrium is

independent of λ̂.

Thus, there exists a monetary rule that makes the response of consumption, invest-

ment, output, and inflation to a monetary shock to be independent of movements in risk

premia when the EIS = 1. However, the path of the nominal and real interest rates need

to depend on the path of λ̂t. Hence, this “neutrality” result does not answer the question

of what role do changes in asset prices play in the monetary transmission mechanism.

E Estimation of Fiscal Response to a Monetary Shock

We estimate the empirical IRFs using a VAR identified by a recursiveness assumption, as

in Christiano, Eichenbaum and Evans (1999), extended to include fiscal variables. The

variables included are: real GDP per capita, CPI inflation, real consumption per capita,

real investment per capita, capacity utilization, hours worked per capita, real wages, tax

revenues over GDP, government expenditures per capita, the federal funds rate, the 5-

year constant maturity rate, and the real value of government debt per capita. We esti-

mate a four-lag VAR using quarterly data for the period 1962:1-2007:3. The identification

assumption of the monetary shock is as follows: the only variables that react contempo-

raneously to the monetary shock are the federal funds rate, the 5-year rate and the value

of government debt. All other variables, including tax revenues and expenditures, react

with a lag of one quarter. This assumption is the natural extension of Christiano et al.

(1999) to a model with fiscal variables: while agents’ decisions (in our case, households

and the government) do not react to the shock contemporaneously, financial variables

(in our case, the federal funds rate, the 5-year rate, and the value of government debt)

immediately incorporate the information of the shock.
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Figure E.1: Estimated IRFs.

Data sources. The data sources are: Nominal GDP: BEA Table 1.1.5 Line 1; Real GDP:

BEA Table 1.1.3 Line 1, Consumption Durable: BEA Table 1.1.3 Line 4; Consumption

Non Durable: BEA Table 1.1.3 Line 5; Consumption Services: BEA Table 1.1.3 Line 6; Pri-

vate Investment: BEA Table 1.1.3 Line 7; GDP Deflator: BEA Table 1.1.9 Line 1; Capacity

Utilization: FRED CUMFNS; Hours Worked: FRED HOANBS; Nominal Hourly Com-

pensation: FRED COMPNFB; Civilian Labor Force: FRED CNP16OV; Nominal Rev-

enues: BEA Table 3.1 Line 1; Nominal Expenditures: BEA Table 3.1 Line 21; Nominal

Transfers: BEA Table 3.1 Line 22; Nominal Gov’t Investment: BEA Table 3.1 Line 39;

Nominal Consumption of Net Capital: BEA Table 3.1 Line 42; Effective Federal Funds

Rate (FF): FRED FEDFUNDS; 5-Year Treasury Constant Maturity Rate: FRED DGS5;

Market Value of Government Debt: Hall, Payne and Sargent (2018).

All the variables are obtained from standard sources, except for the real value of debt,

which we construct from the series provided by Hall et al. (2018). We transform the series

into quarterly frequency by keeping the market value of debt in the first month of the
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(1) (2) (3) (4) (5) (1) - (2) - (3) + (4) - (5)
Revenues Interest Payments Transfers & Debt in T Initial Debt Residual

Expenditures

Benchmark 10.54 36.2 2.68 1.42 -17.62 9.3
[-14.11,35.18] [20.07,52.33] [-16.99,22.34] [-14.77,17.61] [-21.62,-13.63] [-16.69,35.29]

Benchmark + EBP (shorter sample) 26.80 23.1 3.55 -7.4 -10.84 -3.6
[10.6,42.82] [8.18,38.02] [-15.14,22.24] [-30.1,15.3] [-16.8,-4.88] [-17.91,10.71]

Contemp. Output & Revenues 12.43 36.39 -0.02 4.03 -15.26 4.65
[-12,36.85] [19.73,53.05] [-17.78,17.73] [-11.11,19.18] [-19.38,-11.14] [-19.73,29.03]

Robustness 1 32.12 45.58 1.5 4.73 -16.26 -6.03
[4.77,59.47] [28.22,62.94] [-18.37,21.36] [-14.01,23.47] [-20.09,-12.43] [-32.81,20.75]

Contemp. Inflation 11.59 37.16 0.72 2.16 -18.37 5.77
[-13.54,36.72] [20.81,53.51] [-18.33,19.77] [-13.9,18.22] [-22.68,-14.06] [-20.24,31.77]

Robustness 2 11.59 37.16 0.72 2.16 -18.37 5.77
[-13.54,36.72] [20.81,53.51] [-18.33,19.77] [-13.9,18.22] [-22.68,-14.06] [-20.24,31.77]

Contemp. Output, Revenues & Infl. 15.32 38.67 -5 6.09 -16.66 -4.4
[-8.62,39.27] [22.67,54.67] [-23.02,13.02] [-9.39,21.57] [-20.62,-12.7] [-29.96,21.17]

Robustness 3 15.32 38.67 -5 6.09 -16.66 -4.4
[-8.62,39.27] [22.67,54.67] [-23.02,13.02] [-9.39,21.57] [-20.62,-12.7] [-29.96,21.17]

Table E.1: The impact on fiscal variables of a monetary policy shock
Note: Calculations correspond to a a 100 bps unanticipated interest rate increase. Confidence interval at 68% level.

quarter. This choice is meant to avoid capturing changes in the market value of debt

arising from changes in the quantity of debt after a monetary shock instead of changes in

prices.

VAR estimation. Figure E.1 shows the results. As is standard in the literature, we find

that a contractionary monetary shock increases the federal funds rate and reduces output

and inflation on impact. Moreover, the contractionary monetary shock reduces consump-

tion, investment, and hours worked.

The Government’s Intertemporal Budget Constraint. The fiscal response in the model

corresponds to the present discounted value of transfers over an infinite horizon, that is,

∑∞
t=0 β̃tTt, where β̃ = 1−λ

1+ρs
. We next consider its empirical counterpart. First, we calculate
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a truncated intertemporal budget constraint from period zero to T :

byb0


debt

revaluation

=
T
∑
t=0

β̃t



 τyt + τt

  
tax revenue

− β̃−1by(im
t−1 − πt − rn)

  
interest payments



− T0,T + β̃T bybT
  

other transfers/expenditures
& final debt

(E.1)

The right-hand side of (E.1) is the present value of the impact of a monetary shock on

fiscal accounts. The first term represents the change in revenues that results from the real

effects of monetary shocks. The second term represents the change in interest payments

on government debt that results from change in nominal rates. The last two terms are

adjustments in transfers and other government expenditures, and the final debt position

at period T , respectively. In particular, T0,T represents the present discounted value of

transfers from period 0 through T . Provided that T is large enough, such that (yt, τt, it)

have essentially converged to the steady state, then the value of debt at the terminal date,

bT , equals (minus) the present discounted value of transfers and other expenditures from

period T onward. Hence, the last two terms combined can be interpreted as the present

discounted value of fiscal transfers from zero to infinity. Finally, the left-hand side repre-

sents the revaluation effect of the initial stock of government debt.

Table E.1 shows the impact on the fiscal accounts of a monetary policy shock, both in

the data and in the estimated model. We first apply equation (E.1) to the data and check

whether the difference between the left-hand side and the right-hand side is different

from zero. The residual is calculated as

Residual = Revenues - Interest Payments - Transfers + Debt in T - Initial Debt

We truncate the calculations to quarter 60, that is, T = 60 (15 years) in equation (E.1).

The results reported in Table E.1 imply that we cannot reject the possibility that the resid-
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Figure E.2: IRFs for the federal funds rate and excess bond premium.

ual is zero and, therefore, we cannot reject the possibility that the intertemporal budget

constraint of the government is satisfied in our estimation.

The adjustment of the fiscal accounts in the data corresponds to the patterns we ob-

served in Figure 2. The response of initial debt is quantitatively important, and it accounts

for the bulk of the adjustment in the fiscal accounts.

EBP. To estimate the response of the corporate spread in the data, we add the EBP mea-

sure of Gilchrist and Zakrajšek (2012) into our VAR (ordered after the fed funds rate).

Since the EBP is only available starting in 1973, we reduce our sample period to 1973:1-

2007:7. The estimated IRFs are in line with those obtained for the longer sample. We find

a significant increase of the EBP on impact, of 6.5 bps, in line with the estimates in the

literature. Moreover, Table E.1 shows that the estimated impact of the monetary shock on

the fiscal accounts is in the ballpark of the benchmark case.

Robustness. To evaluate the sensitivity of our results to different identification assump-

tions, we consider alternative exercises that also impose the recursiveness assumption.

We analyze three main specifications: i) output and revenues are allowed to respond

contemporaneously to the monetary shock, ii) inflation is allowed to respond contem-
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poraneously to the monetary shock, iii) output, revenues, and inflation are allowed to

respond contemporaneously to the shock.

Table E.1 summarizes the results. The estimated effect of a monetary shock on fiscal

variables is nearly identical across all cases. The implied response of the primary surplus

ranges from 9 bps to 26 bps. While the upper bound is about three times larger than in our

benchmark case, it remains orders of magnitude smaller than the fiscal backing implied

by the MSV equilibrium.
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