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force—sticky inflation—as higher debt amplifies the cost of maintaining low infla-
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1. Introduction

Persistent inflation became globally endemic in the wake of the COVID-19 pandemic.
As inflation accelerated, central banks held interest rates low, defying early warnings
and drawing harsh criticism. This critique reflects a traditional view: a prompt rate hike
would have anchored expectations, signaled policy resolve, and prevented more painful
corrections later. But this view overlooks a historical regularity: during major disruptions
such as wars, natural disasters, or political crises, inflation often rises alongside surging
public debt (see, e.g., Hall and Sargent, 2021, 2022). In such episodes, central banks face an
unusual challenge: raising rates may increase the fiscal burden, leading agents to expect
inflation as a means of debt stabilization. How monetary policy should respond when
inflation is entangled with fiscal solvency remains an open question.

This paper studies optimal monetary policy when agents anticipate the possibility
of future inflationary finance. We develop a tractable New Keynesian model in which
private agents foresee a future policy shift during which the central bank temporarily
tolerates higher inflation to reduce public debt. In this monetary accommodation phase,
real interest rates fall while inflation rises, more so when debt is higher. Monetary and fis-
cal policies eventually return to a stable regime. The key tension arises before the policy
shift: although higher interest rates suppress aggregate demand, they also worsen the fis-
cal outlook, increasing the likelihood of inflationary finance. This feedback loop reshapes
monetary policy transmission and calls for a reassessment of optimal policy design.

Our analysis is motivated by recent studies that highlight the role of fiscal expecta-
tions in shaping inflation dynamics. Hilscher, Raviv and Reis (2022) show that inflation-
ary disaster expectations rose sharply following the pandemic, potentially reflecting fears
of inflationary debt finance.1 Hazell and Hobler (2024) demonstrate that even a single
electoral event, if perceived as fiscally consequential, can significantly shift inflation ex-
pectations. Our work is also inspired by recent quantitative models with regime switches
in debt-financing strategies, such as Chung, Davig and Leeper (2007), Bianchi and Ilut
(2017), and Bianchi and Melosi (2022). These studies show that fiscal regime changes
have played an important role in past inflationary episodes. We contribute to this litera-
ture with a tractable framework that yields analytical solutions. These allow us to isolate
the key parameters governing fiscal-monetary interactions, identify the structural condi-
tions under which specific inflationary dynamics emerge, and derive optimal monetary
responses—complementing the insights from simulation-based approaches.

1Gomez Cram, Kung and Lustig (2023) find that fiscal news affect Treasury prices through inflation
expectations. Li, Fu and Xie (2022) show that inflation expectations respond to fiscal shocks and predict
future debt levels. Wiegand (2025) find that fiscal shocks affect breakeven inflation.
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Our paper makes three concrete contributions. First, it shows that sticky inflation is
central to understanding monetary policy in fiscally sensitive environments. Sticky infla-
tion emerges when elevated debt levels raise inflation expectations, as agents anticipate
future episodes of inflationary finance. Because increases in primary deficits or interest
rates persistently add to the stock of debt, shocks to these variables leave a lasting imprint
on expectations. Since inflation is forward-looking, these expectations exert sustained up-
ward pressure on current inflation. This dynamic feedback loop complicates the central
bank’s task by undermining conventional monetary transmission: although rate hikes
may initially suppress inflation by curbing demand, they can ultimately backfire. As the
debt burden grows, expectations of future inflation rise, causing inflation to resurge.

Section 2 shows that, prior to an inflationary-finance episode, the equilibrium is char-
acterized by a four-equation system—an extension of the standard three-equation New
Keynesian framework. Sticky inflation emerges as a distinct term in both the Phillips
curve and the Euler equation. In the Phillips curve, this term appears as an endogenous
cost-push shock linked to the debt path; in the Euler equation, it enters as a shifter of the
inflation-neutral interest rate.

Section 3 examines how sticky inflation shapes macroeconomic outcomes under alter-
native monetary policy strategies, setting the stage for the optimal policy analysis that fol-
lows. We show that while it is possible to fully stabilize output when the sticky-inflation
channel is active, doing so comes at the cost of a prolonged inflationary episode. This
inflation is driven by expectations that debt will eventually be monetized.

We also demonstrate that temporary increases in nominal interest rates—intended to
curb inflation—may succeed only on impact. For such a policy to be effective in the short
run, it must involve a sufficiently persistent contractionary stance. Yet even then, in the
absence of a fiscal adjustment that alters the debt path, inflation eventually resurfaces.

These policy experiments highlight the trade-offs faced by the monetary authority:
efforts to stabilize one target—whether inflation, output, or debt—inevitably destabilize
the others. These trade-offs arise because sticky inflation endogenously breaks the divine
coincidence that typically guides monetary policy in New Keynesian frameworks.

We show that it is the beliefs of price-setters—not those of households—that drive
these policy trade-offs. This distinction becomes clear in our decomposition of the effects
of sticky inflation into two channels: an endogenous cost-push effect, which enters the
Phillips curve through firm expectations, and an endogenous interest-rate effect, which
reflects household beliefs. If price-setting behavior does not respond to the prospect of
future inflationary finance, the cost-push effect vanishes. In that case, monetary policy
can fully offset fiscal expectations, just as with standard demand or interest-rate shocks.
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When a policy trade-off is present—that is, when price-setting behavior responds to
fiscal expectations—a natural question arises: what should the central bank do under the
constraints imposed by sticky inflation? Our second contribution provides an answer. We
show that what may appear as underreaction relative to standard Taylor-rule prescrip-
tions is, in fact, optimal for a central bank aiming to stabilize both inflation and output.
This insight helps rationalize the behavior of many central banks that, despite criticism,
deviated from Taylor-style responses in the aftermath of the COVID-19 pandemic.

We formally analyze optimal policies in Section 4. In the presence of sticky inflation,
the standard objective of minimizing inflation and output volatility gives rise to an endoge-
nous debt-stabilization motive. Because debt influences output and inflation in the event of
the inflationary-financing phase, the planner has an incentive to limit debt accumulation
preemptively—even if inflationary finance never materializes. The optimal response to
a fiscal shock involves deviating from the Taylor principle: nominal interest rates adjust
less than one-for-one with inflation and respond negatively to fiscal shocks. This result
holds across alternative assumptions about the central bank’s degree of commitment.

Optimal policy in our setting departs in important ways from the textbook case. In
response to a conventional cost-push shock, optimal policy generates stagflation—a rise
in inflation accompanied by a contraction in output. In contrast, the optimal response
to a fiscal shock involves an initial boom, despite the increase in inflation. This outcome
hinges on the debt-stabilization motive: the planner accepts temporarily higher inflation
and a wider output gap to moderate the pace of debt accumulation.

A second key distinction concerns the behavior of the price level. In the textbook anal-
ysis, the price level is stationary under optimal policy: inflationary episodes are offset by
subsequent deflation, returning the price level to its original path. In our setting, how-
ever, price-level targeting is not optimal. Temporary fiscal shocks instead lead to permanent
increases in the price level.

These differences have important implications for evaluating central bank performance
in fiscally sensitive environments. For example, if the inflationary episode following the
COVID-19 pandemic is interpreted as the result of a conventional cost-push shock, the
appropriate policy response would involve a commitment to future deflation to bring the
price level back to its pre-shock path. In contrast, such a strategy would be inefficient in
the case of a fiscal shockwhere price-level targeting is no longer optimal.

Our normative analysis reveals further subtleties. We examine how central banks with
varying degrees of hawkishness should respond to fiscal shocks, interpreting hawkish-
ness as placing greater weight on inflation relative to output deviations. Paradoxically,
the more hawkish the central bank, the less it should raise interest rates in response to
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a surprise fiscal expansion. Rather than resisting inflation in the short run, an optimal
hawkish central bank with commitment should front-load inflation to accelerate debt di-
lution and thereby mitigate the sticky inflation dynamics that would otherwise persist.
Understanding sticky inflation is essential: a hawkish central bank cares about the entire
path of inflation and is willing to tolerate more of it early on to avoid being trapped with
it later. Ironically, a central bank that reacts to an inflation surge with aggressive rate hikes
may end up doing precisely the opposite of what its own objectives prescribe.

The third contribution is a policy counterfactual exercise evaluating the role of mone-
tary policy in the post-pandemic U.S. inflation. In Section 5, we confront the theory with
data and simulate what would have happened had the Federal Reserve strictly adhered
to the Taylor principle. We discipline the calibration using the observed pass-through of
fiscal shocks to inflation expectations and decompose the recent inflation surge into con-
tributions from primary deficits, supply shocks, bond-valuation effects, and deviations
from the Taylor rule. Using model-implied disturbances that rationalize the observed
paths of deficits, interest rates, debt-to-GDP, and inflation, we construct a counterfactual
scenario in which the Fed followed a more aggressive Taylor-type response. The model
predicts that such a policy would have resulted in higher inflation and debt. Contrary
to the conventional view, we find that the Fed’s expansionary stance may have damp-
ened medium-term inflation by accelerating debt erosion—an outcome consistent with
the logic of sticky inflation and closer to the optimal policy prescription.

Literature review. Interactions between monetary and fiscal policy have been formally
studied since Sargent and Wallace (1981) and are now standard material in macroeco-
nomic textbooks, particularly in the context of seigniorage financing (e.g., Ljungqvist and
Sargent, 2018). In the canonical New Keynesian model, however, these interactions were
largely sidelined, and inflation was modeled as independent of the government’s budget
constraint. A distinct line of research emerged from the Fiscal Theory of the Price Level
(FTPL), which emphasizes that the price level adjusts to ensure the sustainability of nomi-
nal debt, given the present value of future primary surpluses(e.g. Leeper, 1991; Woodford,
1998; Cochrane, 1998). The government budget constraint naturally found its way back
into New Keynesian models through the FTPL while further adding monetary/fiscal in-
teractions through changes in the real interest rate (e.g., Sims, 2011; Leeper and Leith,
2016; Cochrane, 2018; Caramp and Silva, 2023, among many others).

While our framework shares the FTPL’s emphasis on the role of fiscal policy, the mech-
anism through which government debt influences the economy is fundamentally differ-
ent. In the FTPL, fiscal variables do not directly enter the Euler equation or the Phillips
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curve; their effect on output and inflation arises indirectly, through the equilibrium se-
lection mechanism when monetary policy is passive. In contrast, in our setting, fiscal
variables—particularly the level of government debt—enter both the Euler equation and
the Phillips curve. As a result, they have a direct impact on output and inflation even
when monetary policy remains active. This direct dependence of the dynamic system on
debt plays a central role in shaping the optimal policy response in our model.

The idea that fiscal variables influence the economy beyond equilibrium selection
aligns with recent work on fiscal policy in Heterogeneous Agent New Keynesian (HANK)
models (see, e.g., Angeletos, Lian and Wolf 2024). In these models, fiscal variables enter
the aggregate Euler equation—an implication of their non-Ricardian features. However,
they do not appear in the Phillips curve. In contrast, our framework allows government
debt to directly affect price-setting behavior through an expectations channel. This fea-
ture is essential for generating deviations from divine coincidence and lies at the heart of
the monetary authority’s policy trade-offs.

The anticipation of a potential inflationary phase places our work within the broader
literature on quantitative models with policy regime switches. This literature has em-
phasized the risk of fiscal stagflation—a simultaneous rise in inflation and a contraction
in output following fiscal shocks (e.g., Bianchi and Ilut 2017; Bianchi and Melosi 2022)—
a phenomenon that can also emerge in our framework. However, our optimal policy
analysis shows that the planner avoids fiscal stagflation by inducing an initial boom in
response to the shock. Moreover, our model with heterogeneous beliefs allows us to dis-
entangle the distinct roles of household and firm expectations in the transmission of fiscal
shocks—highlighting a particularly important role for firm expectations.

On the normative front, our work contributes to the literature on optimal fiscal and
monetary policy in environments with sticky prices (e.g., Benigno and Woodford 2003,
2007; Schmitt-Grohé and Uribe 2004). This literature typically finds a muted inflation re-
sponse to fiscal shocks under the optimal policy. In contrast, we derive an endogenous
debt-stabilization motive driven by entrenched expectations of future monetary accom-
modation, which significantly alters the dynamics under the optimal policy.

Our work also relates to recent studies of optimal policy with long-term debt (e.g.,
Leeper and Zhou 2021) and limited commitment (e.g., Leeper, Leith and Liu 2021), which
highlight larger inflation responses to fiscal shocks. Unlike these approaches, we empha-
size the role of expectations of monetary accommodation in shaping optimal policy.

Notably, the post-COVID-19 inflation surge has renewed interest in the drivers of
inflation from both analytical and quantitative perspectives.2 On the quantitative side,

2On the analytical front, recent work has emphasized channels unrelated to fiscal shocks, such as
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Figure 1: Timeline of events
Note: Over a small time interval ∆t, the economy switches to the inflationary-finance phase with
probability λ∆t, and stays in the fiscal-expansion phase with the remaining probability.

Blanchard and Bernanke (2023), Gagliardone and Gertler (2023), Shapiro (2024), and Gi-
annone and Primiceri (2024) decompose inflation into labor market and energy shocks,
while Benigno and Eggertsson (2023) emphasize nonlinearities in the Phillips curve. This
first wave of work follows the New Keynesian tradition, abstracting from debt-financing
constraints. In contrast, we explicitly model fiscal-monetary interactions and show how
these manifest as cost-push shocks. We see our contribution as part of a second wave of
research—alongside Liemen and Posch (2022), Barro and Bianchi (2024), and Smets and
Wouters (2024)—that places fiscal dynamics at the center of inflationary analysis.

2. Model

2.1 Environment

We cast the model in continuous time, t ∈ [0,∞). The economy starts at a fiscal-expansion
phase where the government runs primary deficits. With Poisson intensity λ, the economy
switches to an inflationary-finance phase that lasts for a predetermined amount of time, T ∗.
In the inflationary-finance phase, government debt is reduced through a mix of fiscal and
monetary tools. After the inflationary-finance phase is over, deficits, debt, output, and
inflation are stabilized forever. Figure 1 summarizes the timeline of events.

The economy is populated by households, firms, and a government. Each group has
possibly different views about the arrival rate of the inflationary-finance phase. Next, we
describe the agents’ behavior, relegating derivations to Appendix A.

employer-worker tensions Lorenzoni and Werning (2023b,a); Guerreiro, Hazell, Lian and Patterson (2024),
hiring frictions Michaillat and Saez (2024), and supply-side constraints Comin, Johnson and Jones (2023).
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Notation. We index variables in the inflationary-finance phase using an asterisk (∗) su-
perscript whereas variables during the fiscal-expansion phase do not carry the super-
script. For example, πt represents inflation at time t of the fiscal-expansion phase whereas
π∗
t is inflation at time t since the start of the inflationary-finance phase. Variables in the

steady state are denoted by an upper bar. For example, consumption in a steady state is
denoted by C.

Government. The government is comprised of fiscal and monetary authorities. The
fiscal authority sends lump-sum transfers Tt—taxes if Tt < 0—to households and issues
short-term real debtBt. Given the assumption of sticky prices, this is equivalent to issuing
nominal debt, as the price level is predetermined in our continuous-time setting. The
monetary authority sets the nominal interest rate it.

The government’s flow budget constraint is given by

Ḃt = (it − πt)Bt + Tt, (1)

given B0 > 0, where πt denotes the inflation rate and it the nominal interest rate. Fiscal
transfers, which equal primary deficits—or surpluses when negative—satisfy the rule:

Tt = −ρBt − γ(Bt −B) + Ψt, (2)

where ρ denotes the interest rate that prevails in a zero-inflation steady state, B is the
steady-state level of debt, and Ψt corresponds to a fiscal shock. Importantly, γ ≥ 0 controls
the strength of fiscal responses—primary surpluses—to the level of government debt. If
γ > 0, debt is mean reverting to B; if γ = 0, transitory fiscal shocks lead debt to stabilize
at different levels.

During the fiscal-expansion phase, there are ongoing fiscal pressures, Ψt > 0. Mean-
while, the monetary authority’s instrument, the nominal rate it, satisfies a Taylor rule:

it = ρ+ ϕπt + ut. (3)

We focus on the case where the Taylor coefficient ϕ and the fiscal rule coefficient γ are such
that the economy is always in an active monetary regime, following the Leeper (1991)
terminology. The disturbance ut allows the monetary authority to respond freely to the
fiscal expansion.3 These choices allow us to analyze an independent monetary authority

3The disturbance ut captures the response of the monetary authority to the fiscal expansion, so we refer
to it as a disturbance to the policy rule instead of a shock.
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that freely chooses interest rates—deviating by ut from the Taylor rule.
When the economy switches to the inflationary-finance phase, the government sets

Ψt = 0, and the monetary authority commits to set a constant real interest rate for a time
interval of length T ∗. The rate is set to whatever level is necessary to bring debt to a target
level Bn. Once debt reaches Bn, monetary policy implements a zero inflation target, and
the economy permanently reaches its steady-state level. T ∗ is fixed regardless of the debt
level. This assumption translates debt levels into a period of future low policy rates,
which, in turn, lead to inflationary bursts.

Discussion: monetary accommodation. In our setting, a fiscal shock triggers expecta-
tions that a fiscal adjustment may rely on a period of high inflation and low bond returns.
This pattern is consistent with the historical evidence on the effects of large fiscal shocks.
For instance, Hall and Sargent (2022) showed that low real rates of return on government
debt accounted for 45% of the decline in the debt-GDP ratio from 1945 to 1960.4 A similar
dynamic was observed during the COVID-19 pandemic, with low rates of return explain-
ing an even larger fraction of the decline in the debt-GDP ratio since its peak in 2020. The
inflationary-finance phase enables us to capture the idea that central banks are unable to
credibly signal that the monetary accommodation observed in previous episodes will not
recur—it is challenging to convince agents that this time is different. This feature also mo-
tivates our assumption that the probability of switching to the inflationary-finance phase
does not respond to policy. As in Caballero and Simsek (2022), agents are opinionated
and they are not easily persuaded by the monetary authority.

Households and firms. The household block follows the structure of the textbook New
Keynesian model. However, the presence of a Poisson event modifies the households’
Euler equation to incorporate the uncertainty regarding the policy stance:

Ċt
Ct

= (it − πt − ρ)︸ ︷︷ ︸
standard term

+ λh

[
Ct

CJt
− 1

]
︸ ︷︷ ︸
policy uncertainty

, (4)

where CJ
t denotes consumption at the instant the economy switches to the inflationary-

finance phase and λh denotes households’ subjective expectation of switching. This Euler
equation includes a standard term associated with the gap between real interest rates and
the discount rate dictating consumption growth. The second term captures the effect of

4Real GDP growth accounted for 30% of the decline in debt-GDP ratio, while an increase in primary
surpluses explained only 25% of the reduction in debt during this period.
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Figure 2: Inflation expectations of households, firms, and professional forecasters

policy uncertainty. The adjustment is given by the jump in marginal utilities the instant
the economy enters the inflationary-finance phase.5

Likewise, the production side also follows the standard New Keynesian model featur-
ing firms facing sticky prices. The key object of this supply-side block is a modified New
Keynesian Phillips curve (NKPC):

π̇t = (it − πt)πt + ϵφ−1

(
(1− ϵ−1)− Wt

Pt

)
Yt︸ ︷︷ ︸

standard term

+λf
ηJt
ηt

(
πt − πJt

)
︸ ︷︷ ︸

policy uncertainty

, (5)

where λf denotes the firms’ subjective belief of switching states and ηt denotes the econ-
omy’s stochastic discount factor (SDF). Like the Euler equation, the firm’s Phillips curve
features a standard term associated with marginal costs. The second term captures the
impact on inflation of policy uncertainty. Firms anticipate that if the economy switches to
the inflationary-finance phase, inflation will jump to πJt —which we dub the jump inflation
term. As adjusting prices immediately is costly, firms reduce price-setting costs by raising
prices today. The jump in inflation is adjusted by ηJt , the SDF after switching states, which
translates the probability of a reform to a risk-adjusted probability.

Discussion: the role of belief heterogeneity. We allow for households’ and firms’ be-
liefs to differ from objective probabilities. Since large fiscal expansions are rare, it can be
challenging for any entity—households, firms, monetary authorities—or even modelers—
to accurately assess the likelihood of policy changes. Moreover, empirically the behavior
of households’ and firms’ expectations differed during the COVID-19 episode. As seen
in Figure 2, firms raised their inflation expectations more aggressively than households
during this period, consistent with the assumption of heterogeneous beliefs.

5Similar terms appear with other forms of uncertainty, such as the uninsurable idiosyncratic income risk
of McKay, Nakamura and Steinsson (2016) or the aggregate disaster risk in Caramp and Silva (2021).
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2.2 A 4-equation log-linear representation

Part of the appeal of the standard New Keynesian model is its log-linear representation
into a tractable 3-equation system. Here, we present a tractable 4-equation log-linear
representation that includes the feedback of fiscal variables on inflation expectations.

Steady state and log-linear deviations. The steady-state corresponds to the case Ψt = 0

and ut = 0, so Bt = B, Ct = C, it = ρ, and πt = 0, where B corresponds to the initial
condition for government debt and C is the steady-state level of consumption.

We denote log-linear deviations from steady state by lower-case variables. We also
define bt ≡ Bt−B

B
, and the output gap xt ≡ Yt−Y

Y
. In turn, ψt ≡ Ψt/B denotes the fiscal

shock scaled by steady-state debt.

Dynamics: Inflationary-finance phase. Once the inflationary-finance phase begins, fis-
cal shocks ψ∗

t and the parameter controlling the fiscal response γ are set to zero. In
turn, the monetary authority implements a constant real interest rate r∗ for T ∗ periods,
as needed to bring debt to a level that no longer requires a fiscal response to stabilize it.
Hence, during the inflationary-finance phase, debt evolves according to b∗t = b∗0+(r∗−ρ)t
for t ≤ T ∗. To ensure that debt reaches the sustainable level after T ∗ periods, monetary
policy must set the real interest rate to:

r∗ = ρ− b∗0 − bn

T ∗ , (6)

where bn ≡ Bn−B
B

denotes the natural or neutral debt level, that is, the debt level for which
no fiscal response is needed to keep debt constant. This is also the debt level at which
inflation and output would jump to zero at the start of an inflationary-finance phase.
Once the target debt level is reached by the end of the reform, the monetary authority
implements a zero inflation target, that is, {x∗T ∗ , π∗

T ∗} = {0, 0}.
Given the terminal condition at the end of the reform, we can roll back the Euler equa-

tion and NKPC to obtain:

x∗t = (r∗ − ρ)(t− T ∗) = (b∗0 − bn)

(
1− t

T ∗

)
, t ∈ [0, T ∗], (7)

and

π∗
t = κ(r∗ − ρ)

∫ T ∗

t

exp(−ρ(s− t))(s− T ∗)ds. (8)

Since at any moment t debt does not jump when the economy switches phases, debt at

10



the start of an inflationary-finance phase equals debt at the end of the fiscal-expansion
phase, b∗0 = bt. Thus, using the expression for the real rate, given in (6), and using (7) and
(8), we can write inflation and the output gap at the instant of the fiscal-monetary reform
in terms of the debt gap bt − bn at the instant of the switch:

π∗(bt) ≡ κΦ(bt − bn) and x∗(bt) ≡ bt − bn, (9)

where Φ ≡
∫ T ∗

0
exp(−ρs)

(
1− s

T ∗

)
ds > 0.

Inflation and the output gap at the instant of the reform, given by (9), in general, will
differ from their values the instant prior to the reform. Thus, these variables jump at the
start of the inflationary-finance phase. The jump size depends on the debt gap. The larger
the gap, the lower the real interest rate and the higher the inflation rate. The coefficient
Φ controls the pass-through from debt to inflation. It captures the increase in inflation
required to bring debt to its neutral level during an inflationary-finance phase.

Dynamics: fiscal-expansion phase. The system of linearized Euler equation, NKPC,
and government budget constraint is:

ẋt = it − πt − ρ+ λhxt − λh(bt − bn) (10)

π̇t = (ρ+ λf )πt − κxt − λfκΦ(bt − bn) (11)

ḃt = it − πt − ρ− γ(bt − bn) + ψt. (12)

Here, κ > 0 is the slope of the Phillips curve. The Taylor rule (Eq. 3) completes the
4-equation system.

The dynamic system above nests several important benchmark models. In the absence
of regime switching (λh = λf = 0), the framework reduces to either the textbook New
Keynesian model—when ϕ > 1 and γ ≥ 0—or the FTPL, when ϕ ≤ 1 and γ < 0. When
debt enters only the Euler equation (λh > 0, λf = 0), the model becomes isomorphic
to a HANK environment, such as the overlapping-generations setup in Angeletos et al.
(2024). The case with homogeneous beliefs corresponds to a tractable version of regime-
switching models, akin to those studied in Chung et al. (2007) and Bianchi (2013). Our
setting with heterogeneous beliefs generalizes these approaches by allowing debt to enter
directly into both the Euler equation and the NKPC with potentially different coefficients.

Determinacy and implementation. Next, we provide the conditions for local determi-
nacy. All proofs are provided in Appendix B.
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Proposition 1 (Determinacy and implementability). Consider a given path of monetary dis-
turbances ut and fiscal shock ψt. Assume that γ ∈ (0, ρ+ λf + λh). Then,

I. Determinacy. There exists a unique bounded equilibrium if and only if

[γ − λh (1 + λfΦ)] (ϕ− 1) > −γ ρ+ λf
κ

λh. (13)

II. Implementability. Let ît denote a path of nominal interest rates and (x̂t, π̂t, b̂t) that satisfies
the Euler equation (10), the NKPC (11), and the government’s flow budget constraint (12).
Suppose ut = ît − ρ− ϕπ̂t, with ϕ satisfying (13), such that we can write the policy rule as

it = ît + ϕ(πt − π̂t). (14)

Then, the unique solution to (10)-(12) and (14) is given by xt = x̂t, πt = π̂t, and bt = b̂t.

Condition (13) generalizes the Taylor principle to our setting.6 For the rest of the paper,
we assume condition (13) is satisfied. An implication is that monetary policy is active
in the sense of Leeper (1991). Appendix B further shows that fiscal policy is passive
when γ ≥ 0. The second part of Proposition 1 shows how a time-varying inflation target
implements any equilibrium allocation. A similar approach can be used to implement
the equilibrium outcomes in the inflationary-finance phase by assuming the monetary
authority follows the policy rule: i∗t = ρ+ ϕπ∗

t + u∗t , given the same coefficient ϕ.7

Integral representation Given an arbitrary path for the real rate rt = it − πt, we can
characterize the system in closed form. The path of debt satisfies the following condition:

bt = e−γtb0 +

∫ t

0

e−γ(t−s)(ψs + rs − ρ)ds. (15)

Debt accumulates through two forces: fiscal pressures, ψs, and real interest rates that
exceed the natural rate ρ. The parameter γ controls the mean reversion in public debt.

Policy uncertainty leads to a discounted Euler equation:

xt = −
∫ ∞

t

e−λh(s−t)(rs − ρ)ds+ λh

∫ ∞

t

e−λh(s−t)(bs − bn)ds. (16)

6When λh = 0, we recover the standard Taylor principle: equilibrium determinacy requires ϕ > 1.
7Here disturbances to the Taylor rule are regime-dependent, but the coefficients are fixed, in contrast to

the literature on regime-dependent rules—see e.g. Farmer, Waggoner and Zha (2009).
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This equation states that changes in future interest rates are discounted by λh. Moreover,
the output gap depends on the present discounted value of future debt gaps.

Integrating the NKPC forward, we obtain the inflation rate

πt = κ

∫ ∞

t

e−(ρ+λf )(s−t)xsds+ κΦλf

∫ ∞

t

e−(ρ+λf )(s−t)(bs − bn)ds. (17)

As in the standard New Keynesian model, inflation is given by forward-looking compo-
nents. One component equals the expected present value of output gaps in the fiscal-
expansion phase. The second component captures the expectation effects. Several em-
pirical studies document such effects: Hazell, Herreno, Nakamura and Steinsson (2022)
estimate a similar NKPC that contains a term capturing long-term inflation expectations
and find that most of the variation in inflation comes from that term.8 Coibion, Gorod-
nichenko and Weber (2022) argue that news about future debt leads households to antici-
pate higher inflation, both in the short run and the long run, connecting these expectations
effects to the level of public debt, consistent with (17).

The appearance of a backward-looking variable in the model—the level of public
debt—has important implications. To compute inflation and output in the textbook model,
we need only information on rates from that moment onward. Thus, if the shock vanishes
with time, so will its effects. This is not true when the backward-looking behavior of debt
is present, as we now need information on the entire history of rates, not only rates going
forward. As a result, monetary policy in the past can affect today’s outcomes. The sticky
inflation phenomenon we highlight in this paper critically depends on this feature.

3. Three policy experiments

This section presents three policy experiments. The results demonstrate that once the
expectation of future monetary accommodation is present, monetary policy can no longer
stabilize output and inflation simultaneously. This finding is significant, as it implies the
failure of divine coincidence. This result depends crucially on firms’ expectation. If firms do
not expect a reform, it is possible to jointly stabilize the output gap and inflation—even
if households do expect one. To isolate the role of firm expectations, we assume λh = 0

throughout most of the section. For tractability, we also focus on the case without a fiscal
stabilizer (γ = 0). These assumptions are relaxed at the end of the section.

8Hazell et al. (2022) attribute fluctuations in the expectations component to permanent changes in mon-
etary policy—permanent changes in output gap targets. Equation (17) shows that temporary fiscal shocks
can rationalize that evidence since they will provoke movements in the expectation component.
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For the rest of the analytical formulations, we assume the fiscal shock is exponentially
decaying, the continuous-time analog of AR(1) processes in discrete time: ψt = e−θψtψ0.

Policy I: Output gap stabilization. In the first experiment, monetary policy aims to
stabilize output during the fiscal-expansion phase. That is, monetary policy implements
a zero output gap, xt = 0.

To stabilize the output gap, the real rate must satisfy rt = ρ. Given the fiscal shock,
government debt is increasing over time: bt = blr − ψt/θψ, where blr ≡ b0 + ψ0/θψ denotes
the long-run debt level in the fiscal-expansion phase.

The proposition below shows that the expectation effects induced by the fiscal shock
lead to an increasing path of inflation over time.

Proposition 2 (Inflation under output gap stabilization). Suppose xt = 0 in the fiscal-
expansion phase. Then, inflation is

πt =
κλΦ

ρ+ λ

[
bt − bn +

ψt
ρ+ λ+ θψ

]
. (18)

Moreover, inflation increases over time, π̇t = κλΦ
ρ+λ+θψ

ψt > 0, and converges to a positive level,
limt→∞ πt =

κλΦ
ρ+λ

(blr − bn) > 0.

Proposition 2 shows that, to stabilize output, monetary policy must live with an ever-
growing inflation. In the fiscal-expansion phase, inflation increases initially in proportion
to primary deficits. However, inflation persists even after deficits dissipate. That is, infla-
tion is sticky. Sticky inflation occurs because the jump inflation component in the Phillips
curve, πJt = κΦ(bt − bn), reflects the expected burst in inflation that trails the path of debt
in an inflationary-finance phase.

Therefore, an independent monetary policy focused on stabilizing output must live
with inflation that trails debt. The sole belief, rational or not, of a future compromise to
aid debt stabilization is enough to destabilize inflation in a monetary independent regime.

Policy II: Inflation stabilization. In the previous exercise, monetary policy focuses ex-
clusively on stabilizing output. In the next exercise, it attempts to combat inflation by
temporarily raising rates, such that rt−ρ = e−θrt(r0−ρ), for a given initial rate r0 > ρ and
persistence parameter θr > 0.

It is useful to express results relative to the previous experiment. For that, we use a
superscript og to denote variables in the output-gap stabilization exercise. With mean
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reverting shocks to rt, the output gap follows:

ẋt = rt − ρ⇒ xt = − 1

θr
(rt − ρ), (19)

where we used the terminal condition limt→∞ xt = 0. As rt > ρ, the output gap is negative
during the fiscal-expansion phase. In turn, the path of debt is

bt = bogt +
1− e−θrt

θr
(r0 − ρ), (20)

where bogt = b0 +
1−e−θψt

θψ
ψ0.

We solve for inflation using the NKPC—equation (17). A policy that fights inflation
deviates from the output-gap stabilization solution through the sum of two effects: a
fight-inflation effect and a jump-inflation effect. Formally:

Lemma 1. Suppose r0 > ρ. With mean-reverting real interest rates, ṙt = −θr(rt − ρ), inflation
is given by:

πt − πogt = F π
t + Jπt .

where F π
t and Jπt are, correspondingly, fight and jump inflation components given by:

F π
t = − κ

θr

e−θrt

ρ+ λ+ θr
(r0 − ρ) < 0 and Jπt =

λκΦ

θr

[
1

ρ+ λ
− e−θrt

ρ+ λ+ θr

]
(r0 − ρ) > 0.

The first term, the fight-inflation term F π
t , captures the standard effect of contrac-

tionary policy through aggregate demand. The term is negative since rt > ρ and con-
verges to zero as the contractionary effect vanishes. Thus, the increase in rt has a mitigat-
ing effect on inflation, as in standard versions of the New Keynesian model.

The second term, the jump inflation Jπt , is the expected present value of inflation after
monetary accommodation, which depends on the path of debt. Jump inflation is always
positive and builds up with time, as debt grows with the accumulation of past inter-
ests. Thus, current rate hikes feedback into present inflation through the expectation of a
greater burst in inflation in the future.

Whereas the fight-inflation term vanishes over time, the jump-inflation term contin-
ues to build up. Hence, which effect dominates depends on the horizon ahead of the
monetary stimulus and the persistence of the shocks. Concretely, we have:

Proposition 3 (Stepping on a Rake). Suppose r0 > ρ. The rate increase reduces inflation on
impact, i.e., π0 < πog0 iff:

θr <
ρ+ λ

λΦ
.
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(a) Inflation (b) Output gap c) Debt

Figure 3: Equilibrium paths with and without contractionary monetary shock

However, there always exists a T̂ > 0 such that πt > πogt for t > T̂ .

The proposition shows two things. First, to be successful in the present, monetary
policy must commit to a sufficiently persistent contractionary policy stance. Monetary
policy can fight inflation in the short run, provided the policy is sufficiently persistent.

Second, although monetary policy may succeed in fighting inflation in the short run,
it faces an unpleasant “stepping-on-a-rake” result: eventually, inflation will come back
and stronger. Once again, inflation is sticky. The reason is that the contractionary effect on
the output gap eventually fades away, whereas the effect on the government debt builds
up over time.

Figure 3 shows the path of inflation, output gap, and debt, for an attempt to fight in-
flation in the fiscal-expansion phase. In Panel (a), we see two paths of inflation: a baseline
(solid) corresponding to a temporary increase in policy rates and a counterfactual (dotted)
with real rates equal to its natural level. While the anti-inflationary strategy is successful
early on, inflation returns a year into the policy. Panel (b) shows the contractionary effect
on the output gap, while Panel (c) shows the path of debt, which accumulates at a faster
pace with the contractionary policy. With an expected monetary accommodation lurking,
attempts to curtail inflation have standard short-run effects. Unlike the canonical New
Keynesian model, they lead to higher inflation in the medium run.

While monetary policy cannot fully stabilize inflation with temporary movements in
the output gap, it could do so if it were to induce a permanent decline in output. Hence,
full inflation stabilization in the fiscal-expansion phase is feasible for the monetary au-
thority, but it requires to keep the economy persistently depressed.9

9In this case, the output gap must offset movements in the government debt, xt = −λΦ(bt−bn). This con-
dition requires that the real rate be rt−ρ = − λΦ

1+λΦψt, in which case debt is given by bt = b0+
1−e−θψt

θψ

ψ0

1+λΦ .
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Discussion: relation to the literature. Versions of the result in Proposition 3 appear
in the literature on fiscal-monetary interactions, though they typically rely on different
mechanisms. Sims (2011) coined the term “stepping on a rake” to describe a similar dy-
namic, which arises in his framework from changes in the valuation of long-term debt—a
channel absent in our model. The result also echoes the unpleasant monetarist arithmetic
of Sargent and Wallace (1981), where a one-time increase in the money supply leads to
persistently higher inflation through seigniorage. In contrast, our mechanism operates
through expectations of future inflation tied to the level of debt.

Bianchi and Melosi (2019, 2022) shows that fiscal shocks in an economy with a tem-
porarily inconsistent policy regime—characterized by active monetary and fiscal policies—
can trigger a fiscal stagflation. We obtain a similar result in a setting with active monetary
and passive fiscal policy, but where agents anticipate a shift toward future monetary ac-
commodation. Importantly, we not only provide an analytical characterization of the
conditions under which this “stepping-on-a-rake” behavior emerges, but also examine
the implications for optimal monetary policy in such an environment.

Policy III: Debt stabilization. In the third policy experiment, monetary policy attempts
to stabilize debt. Stabilizing debt requires the real rate to neutralize the effects of deficits:
rt − ρ = −ψt, so bt = b0. Thus, the output gap is: xt = ψt/θψ given the terminal condition
limt→∞ xt = 0. In this case, inflation follows:

πt =
κ

θψ

ψt
ρ+ λ+ θψ

.

All in all, to stabilize the debt, the monetary authority must overheat the economy in
proportion to the trajectory of primary deficits.

Debt stabilizers and household expectations. The previous exercises abstracted from
household expectation effects (λh = 0) and debt stabilizers (γ = 0). We now examine the
role of these two features. For clarity, we return to the first exercise and consider a policy
that fully stabilizes output (xt = 0), while setting b0 = bn = 0 to simplify the expressions.

With households expecting a reform, stabilizing output in the fiscal-expansion phase
requires setting the real rate to rt − ρ = λhbt. A high interest rate is necessary to offset the
expansionary effects of a positive debt gap. Given this real rate, debt will follow:

ḃt = −(γ − λh)bt + ψt ⇒ bt =
e−(γ−λh)t − e−θψt

θψ + λh − γ
ψ0,
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(a) Government debt (b) Inflation (c) Fiscal shock

Figure 4: Equilibrium with households’ expectation effects and debt stabilizer

Thus, provided λh < γ, debt eventually reverts to its initial level. In turn, inflation is
given by the present discounted value of its jump inflation term, which is given by

πt =
ψ0

θψ + λh − γ

[
e−(γ−λh)t

ρ+ λ+ γ − λh
− e−θψt

ρ+ λ+ θψ

]
> 0.

These expressions clarify the roles of λh and γ. A positive λh implies that real inter-
est rates rise with the level of debt, which amplifies debt accumulation through higher
borrowing costs. In contrast, a positive γ triggers an offsetting response of primary sur-
pluses, helping to reduce debt. When λh < γ, inflation converges back to its steady state.
In this case, the automatic debt stabilizer is strong enough for primary surpluses to grad-
ually reduce debt. Figure 4 illustrates this mechanism: a fiscal shock causes a sharp rise
in government debt and a temporary inflation surge. As the shock fades, the stabilizer
mechanism lowers debt, and inflation subsides. The figure also highlights the sticky infla-
tion phenomenon—inflationary effects persist even after ψt has nearly returned to zero.

When γ = λh, we recover the case discussed at the beginning of this section. To
stabilize output, interest rates must rise to counteract the household-expectation effects.
In this scenario, the automatic debt stabilizer exactly offsets the impact of higher interest
rates on debt. As a result, debt dynamics are identical to the case with γ = λh = 0. When
γ < λh, the feedback loop between debt accumulation and real rates leads to explosive
dynamics: debt and inflation spiral upward. In cases where real rates react to the level of
debt, fiscal sustainability requires that primary surpluses respond aggressively to debt.

This last exercise shows that adding household expectations and an automatic stabi-
lizer does not change the main message of the output stabilization exercise. Appendix A.2
develops the other experiments and shows that the same lessons carry through in general.
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Discussion: endogenous fiscal cost-push shocks. We have shown that efforts to sta-
bilize one variable—output, inflation, or debt—inevitably destabilize the others. As a
result, divine coincidence breaks down in our setting, even in the absence of traditional
supply shocks. The reason is that expectations of future monetary accommodation by
price-setters generate an endogenous fiscal cost-push shock.10 Unlike conventional supply
shocks, the fiscal cost-push shock responds to changes in monetary policy. This feature
has important implications for the design of optimal policy, which we consider next.

4. Optimal Policy

In this section, we study optimal monetary policy during the fiscal-expansion phase. As
discussed above, the expectation of monetary accommodation breaks divine coincidence.
Thus, a benevolent monetary authority faces a non-trivial trade-off between stabilizing
output, inflation, and debt.

4.1 The optimal policy problem

We consider a standard approximation to households’ welfare function in which the plan-
ner minimizes the expected present value of squared deviations of output and inflation
from their steady-state values. The only policy instrument is the path of nominal interest
rates during the fiscal-expansion phase. The planner commits to a path of interest rates.

We present the optimal policy without automatic debt stabilizers, γ = 0, and no house-
holds’ expectation effects, λh = 0. We relegate more general solutions to Appendix D. The
planner’s and firms’ beliefs coincide. Hence, we write λf = λ.

The planner’s objective. Once the inflationary-finance phase initiates, the planner has
no control over inflation or output, but we can still compute the value of its welfare ob-
jective. Starting with a debt level b∗0, the value of the planner’s objective is proportional
to the square deviation of debt from its neutral level:

P∗(b∗0) =

∫ T ∗

0

e−ρt(αx∗2t + βπ∗2
t )dt = Υ · (b∗0 − bn)2

where Υ ≡ (α + β(κΦ)2)
∫ T ∗

0
e−ρt

(
1− t

T ∗

)2
dt.11

10This result is reminiscent of the endogenous cost-push shock in Guerrieri, Lorenzoni, Straub and Wern-
ing (2021). While they rely on asymmetric sectorial shocks, we focus on the role of expectation effects.

11We use that x∗t = (b∗0 − bn)
(
1− t

T∗

)
and π∗

t = κΦ(b∗0 − bn)
(
1− t

T∗

)
to obtain P∗(b∗0) = Υ(b∗0 − bn)2.
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At the beginning of the fiscal-expansion phase, the planner’s objective function can be
written as

P = −1

2
E
[∫ τ

0

e−ρt
(
αx2t + βπ2

t

)
dt+ e−ρτP∗

τ (bτ )

]
,

where τ denotes the random time the economy switches to an inflationary-finance phase.
Given the arrival time is exponentially distributed, we obtain:

P = −1

2

∫ ∞

0

e−(ρ+λ)t
[
αx2t + βπ2

t + λ ·Υ · (bt − bn)2
]
dt.

This objective tells us that even though only output and inflation directly affect the plan-
ner’s objective, the influence of government debt on the inflationary-finance phase creates
an endogenous debt-stabilization motive. In other words, in addition to inflation and out-
put, the planner wants to minimize deviations of government debt from its natural level;
the weight on debt does not come from the planner’s concern about budgetary affairs but
because debt will affect inflation in the inflationary-finance phase. Debt will also affect
inflation in the fiscal-expansion phase through expectation effects.

An important implication of this result is that our setting becomes markedly distinct
from the classic analysis of Barro (1979) and its modern extensions (e.g., Aiyagari, Marcet,
Sargent and Seppälä, 2002). In those frameworks, fluctuations in government debt are
used to optimally smooth distortionary taxes over time. In contrast, deviations of debt
from its natural level are costly in our setting, giving the planner an explicit incentive to
stabilize the debt path itself.

Competitive equilibria. The planner’s problem involves choosing a competitive equi-
librium. A competitive equilibrium corresponds to a bounded solution to the system
(10)-(12) given b0, a path of fiscal shock ψt, and a path of real interest rates.

For any given initial condition for the output gap, inflation satisfies:

π0 = κ
x0 + λΦ(b0 − bn)

ρ+ λ
+

κ

ρ+ λ

∫ ∞

0

e−(ρ+λ)t [(1 + λΦ)(rt − ρ) + λΦψt] dt. (21)

Thus, the set of competitive equilibria can be indexed by a path of real interest rates
{rt}∞0 and an initial output gap x0—the monetary authority can implement a particular
equilibrium using the conditions in Proposition 1. While the planner can freely choose
the initial output gap, it cannot independently choose both the output gap and inflation.
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Debt expropriation and lack of a classical solution. As often occurs in optimal Ramsey
problems, the planner may have incentives to expropriate private agents at time zero.
Debt is real, and prices are sticky, so expropriation cannot occur through a price level
jump. Instead, the planner can effectively choose an arbitrarily negative real return rt on
debt for an infinitesimal period, which leads to a downward jump in government debt in
period zero. This would amount to an instantaneous debt deflation.

The above observation implies that a classical solution to the planner’s problem, one
where state variables follow a continuous path, does not exist. The possibility of an
“expropriation-like” debt path occurs because the model does not penalize extremely low
rates. To avoid the possibility of expropriation, we introduce penalties on past promises,
similar to the approach in Marcet and Marimon (2019) and Dávila and Schaab (2023).12

In particular, we consider a penalized version of the problem in which the planner
faces a penalty associated with the choice of the initial value for each forward-looking
variable, namely x0 and π0. By appropriately choosing the penalties, we ensure there
is no expropriation. The penalty itself does not directly affect the path of inflation and
output. Its effect on the optimal solution is entirely mediated by the impact on the initial
debt level. The planner’s problem can be written as follows:

Problem 1 (Commitment Problem). The planner’s problem is

max
[xt,πt,bt,rt]∞0

−1

2

∫ ∞

0

e−(ρ+λ)t
[
αx2t + βπ2

t + λΥ(bt − bn)2
]
dt+ ξxx0 + ξππ0, (22)

subject to the equilibrium system conditions (10-12) and the initial condition for inflation, (21),
given b0 and fiscal shock’s path, ψt.

The integral above is the original objective, and the last two terms capture the penalties
on the initial output gap, ξx, and initial inflation, ξπ. Absent the penalties, the initial value
of the co-states for inflation, output gap, and debt are all zero. In that case, there would
be a discontinuous jump in the value of debt at t = 0. We choose the values of ξx and
ξπ such that limt→0 bt = b0, while the initial value of the co-states on the output gap and
inflation is still equal to zero.

Optimal interest rate policy. The following proposition characterizes interest rates un-
der the optimal policy.

12We show in the Appendix C.1 that a classical solution with smooth state variables does not exist without
a penalty. Formally, it is optimal to have a Dirac mass on interest rates in period zero, and limt→0 bt ̸= b0.
See Arutyunov, Karamzin and Pereira (2019) for a discussion of control problems lacking classical solutions.
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Proposition 4 (Interest rates.). The paths of real and nominal interest rates under the optimal
policy are:

rt − ρ = −βκ(1 + λΦ)

λΥ+ α
πt −

λΥ

λΥ+ α
ψt and it − ρ =

[
1− β

κ(1 + λΦ)

λΥ+ α

]
πt −

λΥ

λΥ+ α
ψt.

The proposition provides a solution to the optimal path of real rates as a linear rule.
An important implication is that it is optimal to reduce the real interest rate in response
to the fiscal shock. That is, to the extent the shock is inflationary, i.e., if πt ≥ 0, real rates
should fall below the natural rate ρ. Moreover, nominal rates move less than one-to-one
with inflation. This result sharply contrasts with the standard prescription based on the
Taylor rule.13 In contrast, Proposition 4 shows that it is optimal to underreact to the shock.

To understand the intuition behind this result, consider a perturbation to a path of
real rates that raises both xt and bt by one unit while keeping their values at other dates
constant.14 The perturbation reduces the planner’s objective by

It = αxt + λΥ(bt − bn) + βκ(1 + λΦ)

∫ t

0

πsds. (23)

The first two terms reflect the direct impact of changing xt and bt, while the last term
captures the indirect impact through inflation in all past dates. Under the optimal policy,
the marginal cost of changing xt and bt is equalized across all periods, so İt = 0. This
implies that it is optimal to reduce the real rate when inflation is high, so the first two
terms offset the welfare impact of having high inflation.15 Therefore, nominal rates must
react less than one-to-one to inflation under the optimal policy.

Dynamics under optimal policy. To characterize the dynamics under the optimal pol-
icy, we use the optimal real interest rule, combined with the fact that xt = x0+ bt− b0− ψ̂t,
and collapse the solution into a bivariate system in πt and bt:π̇t

ḃt

 =

ρ+ λ −κ(1 + λΦ)

−β̂ 0


 πt

bt − bn

+

κ(ψ̂t + b0 − bn − x0)

α
λΥ+α

ψt

 , (24)

13Of course, in our solution, the planner still uses the threat of reacting to movements in inflation more
than one-to-one off the equilibrium to ensure the equilibrium selection.

14Given x0, and under the log utility assumption, an increase in real rates raises the output gap and
government debt by the same amount.

15Notice that İt = α(rt−ρ)+λΥ(rt−ρ+ψt)+βκ(1+λΦ)πt, using the Euler equation and government’s
flow budget constraint. Hence, İt = 0 implies the the optimal real rate in Eq. (23) after rearrangement.
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where β̂ ≡ βκ(1+λΦ)
λΥ+α

and ψ̂t =
1−e−θψt

θψ
ψ0. The eigenvalues of this system are:

ω =
ρ+ λ+

√
(ρ+ λ)2 + 4κ(1 + λΦ)β̂

2
> 0, ω =

ρ+ λ−
√

(ρ+ λ)2 + 4κ(1 + λΦ)β̂

2
< 0.

Because there is one positive and one negative eigenvalue, there is a unique bounded
solution for any given x0.

The optimality condition for the initial output gap is:∫ ∞

0

e−(ρ+λ)t

[
αxt +

βκ

ρ+ λ
πt

]
= 0. (25)

This condition says that the planner sets the discounted value of a combination of output
and inflation to zero, depending on the relative weight of output and inflation on wel-
fare. Therefore, if inflation is, on average positive, it is optimal to choose x0 such that the
present value of the output gap is negative, counteracting the inflationary pressures.

4.2 Hawks vs. doves

It is instructive to consider extreme cases where the planner only cares about inflation
or only about output, which we associate with hawkish and dovish central banks. In both
cases, the planner assigns a positive endogenous weight to debt stabilization. To simplify
the message, we set b0 = bn = 0. We characterize optimal policy for generic values of α
and β in Appendix C.

Doves. Consider first the case of a dovish central bank, that is, β = 0.

Proposition 5 (Optimal policy: Doves). If β = 0, then,

(i) Inflation:

πt =
κ

ω

αλΦ

α + λΥ

ψ0

ω + θψ
+
κλ(αΦ−Υ)

λΥ+ α

1− e−θψt

θψ(ω + θψ)
ψ0. (26)

where πt > 0 and π̇t > 0.

(ii) Output gap:

xt =
λΥ

λΥ+ α

ψ0

ρ+ λ+ θψ
− λΥ

λΥ+ α

ψ0 − ψt
θψ

, (27)

where x0 > 0 and ẋt < 0.
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(iii) Government debt:
bt =

α

λΥ+ α

ψ0 − ψt
θψ

. (28)

Proposition 5 characterizes the optimal reaction of a dovish central bank to a fiscal
shock. The dovish central bank faces a trade-off between stabilizing the output gap in the
fiscal-expansion phase and stabilizing the output gap in the inflationary-finance phase,
which ultimately requires influencing the government debt. The optimal response of the
monetary authority is to partially offset the effects of the fiscal shock on debt:

rt − ρ = − λΥ

λΥ+ α
ψt.

This can be seen from the optimality condition (23). When the planner gives no weight
to inflation, equalizing the marginal cost of changing interest rates, İt = 0, requires the
following condition to be satisfied: αẋt = −λΥḃt < 0. Hence, it is optimal to front-load
aggregate demand such that the decline in output counteracts the increase in government
debt. This requires a reduction in real rates in response to the fiscal shock. The magnitude
of the adjustment depends on the relative weight of debt stabilization on welfare. When
λ is close to zero, it is unlikely the economy will switch to the inflationary-finance phase,
and the planner minimally reacts to the shock. In this case, the output gap is close to zero,
and debt absorbs most of the fiscal shock. When λ is large, the planner offsets most of
the fiscal shock, dampening the debt response. Given the planner only cares about the
output gap, there is no attempt to stabilize inflation, which ends up being positive and
increasing over time.

Hawks. Consider next the case of a hawkish central bank, that is, α = 0.

Proposition 6 (Optimal policy: Hawks). Suppose α = 0. Then,

(i) Inflation:

πt = κ
ψt − ω

ρ+λ+θψ
eωtψ0

(ω + θψ)(ω + θψ)
, (29)

where π0 > 0, π̇0 < 0, and πt < 0 for t sufficiently large.

(ii) Output gap:

xt =
ψ0

ρ+ λ+ θψ

[
ω

ω + θψ
+
ρ+ λ+ θψ
ω + θψ

]
− β

κ(1 + λΦ)

λΥ
pt −

ψ0 − ψt
θψ

, (30)

where pt =
∫ t
0
πsds is the price level at date t.
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(a) Inflation (b) Real rates (c) Government debt

Figure 5: Equilibrium dynamics under optimal policy

(iii) Government debt

bt = −βκ(1 + λΦ)

λΥ
pt, (31)

where ḃ0 < 0 and limt→∞ bt > 0.

The hawkish central bank faces a trade-off between stabilizing inflation in the fiscal-
expansion phase and stabilizing it in the inflationary-finance phase through its effect on
government debt. Given π0 > 0, it is again optimal to reduce real rates on impact:

r0 − ρ = −βκ(1 + λΦ)

λΥ
π0 − ψ0 < 0. (32)

In this case, to equalize the marginal cost of changing interest rates, the following condi-
tion must be satisfied: λΥḃt = −βκ(1 + λΦ)πt. Hence, it is optimal to reduce real rates to
slow down debt accumulation, partially offsetting inflationary pressures. Interestingly, a
hawkish central bank initially reduces real rates more aggressively than its dovish coun-
terpart.16 Therefore, sticky inflation creates an incentive for the planner to front-load in-
flation. Low real rates initially raise the output gap, creating some short-run inflationary
pressures, but it slows down debt accumulation and reduces future inflation.

Discussion: Hawks vs. doves. Figure 5 shows the optimal policy for different values
of β, the welfare weight on inflation, for a fixed weight on the output gap, which we
normalize to α = 1. The case β = 1 corresponds to a planner who gives equal weight to
inflation and the output gap, while the case β > 1 (β < 1) corresponds to a planner who
gives more weight to inflation (output gap). A striking feature is that the optimal real rate
is below its natural level, regardless of β. Therefore, the planner always finds it optimal
to move nominal rates less than one-to-one with inflation.

16Recall that for a dovish central bank r0 − ρ = − λΥ
λΥ+αψ0, which is greater than −β κ(1+λΦ)

λΥ π0 − ψ0.
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(a) Output gap (Cost-push shock) (b) Output gap (Fiscal shock)

(c) Price level (Cost-push shock) (d) Price level (Fiscal shock)

Figure 6: Exogenous cost-push shock vs fiscal shock

Paradoxically, a hawkish central bank achieves lower inflation despite having lower
real rates. By reducing the pace of debt accumulation, the planner counteracts the infla-
tionary pressures stemming from de-anchored expectations caused by the fiscal shock.

Automatic debt stabilizers. We focused so far on the case without automatic debt sta-
bilizers (γ = 0). In this setting, temporary shocks can have permanent effects on govern-
ment debt. By contrast, when automatic stabilizers are present (γ > 0), the fiscal authority
is assumed to commit to raising taxes over time, ensuring that debt eventually returns to
its initial level. Appendix D.1 shows that the optimal policy with automatic debt sta-
bilizers is qualitatively similar to the case with γ = 0. The main difference regards the
long-run behavior debt. With automatic debt stabilizers, debt eventually returns to its
initial level, so both output and inflation return to their steady-state values.

4.3 Comparison with textbook analysis

We have shown that sticky inflation in our setting manifests as an endogenous fiscal cost-
push shock. While this shock shares similarities with conventional cost-push shocks, the
implications for optimal policy differ in important ways.
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The first key difference concerns the behavior of the output gap. In standard models,
an exogenous cost-push shock leads to stagflation under the optimal policy—that is, in-
flation rises while the output gap contracts. Panel (a) of Figure 6 illustrates this pattern:
the output gap turns negative even when the central bank adopts a dovish stance.

Although our framework allows for fiscal stagflation—as demonstrated in Section 3—
Panel (b) shows that optimal policy avoids stagflation on impact. In fact, the output gap is
initially positive, even under a highly hawkish central bank. Intuitively, the central bank
responds to the fiscal shock by lowering real rates enough to stimulate demand, thereby
overheating the economy despite the inflationary impact.

The second key difference concerns the behavior of the price level. In the textbook
case, inflationary episodes are followed by deflation, such that the price level eventually
returns to its initial level—see Panel (c) of Figure 6. Price-level targeting is a hallmark of
optimal monetary policy under commitment (see, e.g., Woodford 2010). In contrast, in
our framework, the price level is non-stationary. As shown in Panel (d), it does not revert
to its pre-shock level following the inflationary episode.

These differences have important implications for the appropriate monetary response
to shocks. In the case of a conventional supply shock, the optimal policy calls for a tem-
porary recession and a commitment to future deflation in order to offset past inflation
and return the price level to target. By contrast, when the shock originates from fiscal
sources and manifests as a fiscal cost-push shock, the optimal response is fundamentally
different: the central bank should initially overheat the economy, and there is no rationale
for engineering a period of deflation to reverse the prior rise in the price level.

4.4 Imperfect credibility

In our baseline analysis, both the planner and firms share the belief that fiscal adjustment
may eventually come through monetary accommodation. We now turn to the case of
imperfect credibility, in which the central bank is fully committed to avoiding monetary
accommodation, but firms continue to view it as a possibility.

Formally, we assume that the planner anticipates a fiscal response—such as future
tax increases—in Phase II that eliminates the need for lower real interest rates. From
the planner’s perspective, the economy transitions directly to the steady state after the
Poisson event. Firms, however, believe that the Poisson event will trigger monetary ac-
commodation. This divergence in beliefs allows us to study how the central bank should
conduct policy when credibility is incomplete–specifically, when firms expect accommo-
dation despite the central bank’s full commitment to avoid it.
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(a) Inflation (b) Output gap

(c) Real rates (d) Government debt

Figure 7: Optimal monetary policy with imperfect credibility

Figure 7 presents the results. Even when the monetary authority is fully committed
to avoiding inflationary finance, it is still optimal to lower real interest rates in response
to the shock. The overall pattern closely mirrors the baseline: a hawkish central bank
reduces rates more aggressively to slow debt accumulation, which in turn helps anchor
inflation expectations.

Thus, the policy of underreaction by the central bank remains optimal—even under
full commitment to price stability—so long as that commitment lacks full credibility in
the eyes of price-setters.

4.5 Robustness to commitment assumptions

We have seen that optimal monetary policy with commitment reduces real rates in re-
sponse to a fiscal shock. Is this a robust feature, or does it depend on commitment as-
sumptions? To answer this question, we consider two polar opposites of the time-zero
commitment case studied. First, we present the solution under discretion. Second, we
consider optimal policy under the timeless perspective. We show that under both scenar-
ios, reducing real rates in response to the fiscal shock is still optimal. This shows that
under-reaction is a robust feature of optimal policies under sticky inflation.
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Discretion. To capture the idea of discretion in continuous time, we assume that the
planner has commitment over a random time interval and takes as given the actions of
future planners.17 Formally, assume that with Poisson intensity λ, the monetary control
is surrendered to a new planner. This implies that, in expectation, the planner has con-
trol over 1

λ
periods. We are interested in the limit as λ → ∞. This corresponds to the

continuous-time analog of discretion in discrete time, where the planner controls policy
over a single period. The next proposition characterizes the optimal policy.

Proposition 7 (Discretion). As λ → ∞, the real interest rate under the optimal policy is given
by rt − ρ = −ψt. Moreover, the output gap is xt = 0.

Proposition 7 shows that, under discretion, the real rate is also below its natural level
upon a fiscal shock. With an arbitrarily short planning horizon, the planner cannot di-
rectly control inflation, which depends on future decisions and has no incentive to distort
the output gap. Hence, the planner fully stabilizes debt to influence future decisions. Be-
hind the scenes, the planner sets the output gap to zero and promises a decline over time,
given the low interest rate. Once a new planner arrives, the planner does not keep this
promise, and sets the output gap again to zero.18

Timeless perspective. Finally, we consider next the case of optimal policy under the
timeless perspective, in the sense of Woodford (1999). When the planner commits to a
time-zero plan, it sets the value of the co-states for the forward-looking variables equal
to zero at t = 0. Under the timeless perspective, the initial value of co-states equals the
corresponding value for a planner who started its planning in the distant past.19 The
next proposition shows that the timeless perspective and commitment solutions actually
coincide when b0 = bn.

Proposition 8 (Timeless perspective). Suppose that b0 = bn, such that government debt is at
its natural level when the fiscal shock is announced. Then, the optimal policy when the planner
commits to a time-zero plan coincides with the optimal policy under the timeless perspective.

An implication of Proposition 8 is that the solution to the Ramsey problem satisfies
a self-consistency property: output and inflation can be described by time-invariant func-
tions of the exogenous shock, ψt, a predetermined variable, bt, and variables describing

17For a similar formulation of a problem with discretion in continuous time, see e.g., Harris and Laibson
(2013) and Dávila and Schaab (2023).

18In Appendix D.2, we consider the case of partial commitment, where the planner takes the initial value
of the output gap as given. Optimal policy with partial commitment coincides with the full commitment
case for a dovish central bank. In this case, it is also optimal for the real rate to be below the natural level.

19For a formal discussion of this procedure, see the discussion in Giannoni and Woodford (2017).
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history-dependence, the co-states on the forward-looking variables. From the point of
view of a planner who started planning in the distant past, there is no incentive to have
output and inflation deviate from these time-invariant functions.20 Once again, we find
that a reduction in real rates after a fiscal shock is a robust feature of optimal policies
under sticky inflation.

5. Staying behind the curve?

In this final study, we compare the observed dynamics of the U.S. economy in the post-
COVID-19 period with the counterfactual scenario where the Fed follows a Taylor rule.
The exercise is motivated by the policy debates ongoing in the aftermath of the COVID-19
pandemic.

5.1 The debate

To set the stage, we present some data patterns from the period. In response to the
COVID-19 crisis, the United States implemented an unprecedented fiscal expansion, re-
sulting in the highest level of government debt (normalized by GDP) in the post-war era.
Panel (a) of Figure 8 shows the large increase in primary deficits in the aftermath of the
COVID-19 crisis, reaching 25% of GDP at its peak. Panel (b) shows how large deficits—
coupled with disruptions to production—substantially increased the debt-to-GDP ratio.
Panel (c) shows a burst in inflation that persisted for two years. The increase in inflation
was unlike any other in the last 40 years. An important aspect of this episode was that
real interest rates remained remarkably low; Panel (c) also shows that the 1-year (ex-ante)
interest rate was negative for over two years after the beginning of the fiscal expansion.

Low real rates reflected the Fed’s response to the inflationary pressures: Panel (d)
shows that the Fed kept its nominal policy rate target low even after the surge in infla-
tion. Panel (d) also shows the nominal rates dictated by two versions of a Taylor rule.21

The figure illustrates the extent of the Fed’s underreaction relative to the Taylor rule.22 The
Fed’s underreaction period was also marked by a persistent increase in inflation expec-
tations, as shown in Panels (e) and (f). In particular, Panel (e) shows the increase in the

20The assumption that b0 = bn is important, as we would observe dynamics under the solution to the
Ramsey problem even in the absence of shocks, so the optimal policy would be time-dependent and deviate
from the solution under the timeless perspective. This observation motivates our focus on the case b0 = bn

21These two versions of the Taylor exemplify the rules discussed by the Fed’s Monetary Policy Report
during this period. For an assessment of these rules, see Papell and Prodan-Boul (2024).

22Bocola, Dovis, Jørgensen and Kirpalani (2024) provide complementary evidence of the Fed’s underre-
action based on movements in bond prices.
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(a) Primary surplus (b) Public debt/GDP (c) Inflation and real rates

(d) Taylor rules (e) 5-year breakeven inflation (f) 5-year inflation disaster

Figure 8: Pre- and Post-COVID-19 Data

Note: Panel (a) shows the primary surplus to GDP ratio. Panel (b) shows the market debt held by the public plus central bank reserves

over GDP. Panel (c) shows year-over-year CPI inflation and the Federal Reserve of Cleveland estimate of the 1-year (ex-ante) real rate.

Panel (d) shows the lower limit of the Federal Funds target range and the predicted nominal rate for two specifications of inertial

Taylor rules. Panel (e) shows the 5-year breakeven inflation. Panel (f) shows the implied average probability of inflation exceeding

4% over the next five years, inflation disaster risk, as estimated by Hilscher et al. (2022) based on inflation option prices.

5-year breakeven inflation, the difference between the yield on a nominal bond and the
yield on an inflation-protected bond (TIPS).23 Panel (f) shows that the market-implied
inflation-disaster probability, as measured by Hilscher et al. (2022), also increased sub-
stantially during this period.

The Fed’s underreaction when inflation expectations were rising led many commenta-
tors to state the Fed was staying “behind the curve.” This was a call to a more aggressive
stance for fears that the Fed had lost control over inflation expectations and a subsequent

23The breakeven inflation is not an unbiased measure of inflation expectation, as it incorporates a risk
premium. However, survey-based measures showed patterns similar to the market-based ones.
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painful recession would be necessary to get inflation back to target—see e.g. Bordo, Tay-
lor and Cochrane (2023) for an account of the debate. Evidently, the Fed ignored the
advice. Did it make a mistake by deviating from the Taylor rule? Did it risk triggering
an inflationary spiral? The next exercise investigates whether following the Taylor rule
would have been the correct policy response in the context of our model.

5.2 Taylor rules vs. realized policies

We use the model to assess the quantitative relevance of our sticky-inflation channel in
shaping the dynamics of debt and inflation following the COVID-19 pandemic. To that
end, we provide a historical shock decomposition and counterfactual analysis. We em-
ploy a discretized version of the model, which we use to construct a Kalman filter to
obtain the series of shocks that best fit the data. We present the details of the model in
Appendix E.

We focus on four shocks: a fiscal shock, which captures the exogenous fiscal expan-
sion; a standard cost-push or markup shock, which reflects the sectorial reallocations
and bottlenecks experienced in this period; a monetary shock, representing the devi-
ations of monetary policy from our specified rule; and a bond-valuation shock. The
bond-valuation shock captures not only unmodeled revaluation effects, as in Bianchi and
Melosi (2017), but also the impact of asset purchases by the Fed, other sources of financ-
ing, and the approximation error of the linearization, as in Hall and Sargent (2024).24 We
then use the identified shocks to compute the dynamics of an economy subject to the same
fiscal and cost-push shocks, but where the monetary authority no longer deviates from
the Taylor rule—the “Taylor scenario.”

Calibration. For the calibration, we treat variable values during 2009Q4 as a steady-
state target. Table 1 summarizes the calibration. We adopt a standard calibration for
parameters commonly used in the New Keynesian literature. We set the discount rate,
ρ, to reflect the average real interest rate in the U.S. from 1990 to 2019 of 0.88% per year.
We set the elasticity of intertemporal substitution, σ, to 0.25, roughly in line with the
evidence by Best et al. (2020). We set the slope of the NKPC, κ, to 0.0138, which is the
value in the empirical work of Hazell et al. (2022). We find in the literature a range of
values for the Taylor rule inflation coefficient, ϕπ, from 1.2 to 1.5. We set the coefficient
to the lower bound of 1.2 to capture a moderate monetary policy response to inflation

24The bond-valuation shock is necessary to match the evolution of government debt in the data, given
that we take the primary surplus, the policy rate, and the inflation rate as observables.
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Table 1: Calibration of the Model

Parameter Symbol Value Description

Discount rate ρ 0.0022 Real-rate average (1990-2019)

Elasticity of Intertemporal Substitution σ 0.25 Best, Cloyne, Ilzetzki and Kleven (2020)

Slope of the NKPC κ 0.0138 Hazell et al. (2022)

Taylor rule inertia ρi 0.90 Bocola et al. (2024)

Taylor coefficient ϕπ 1.2 Moderate response calibration

Fiscal rule γ 0.038 Bianchi, Faccini and Melosi (2023)

Initial debt to quarterly GDP ratio bn 0.7683*4 Debt to GDP in 2019Q4

Quarters of high inflation in Phase II T ∗ 16 Hazell and Hobler (2024)

Probability of Phase II λf 0.015 Hilscher et al. (2022)

deviations from an inflation target. This choice is to bring the actual and realized interest-
rate path coefficients as close as possible. We also include a backward-looking component
in the monetary rule, consistent with the evidence on the inertial behavior of the Fed.
Following the estimates in Bocola et al. (2024), we set the autoregressive parameter, ρi, to
0.90.

The rest of the parameters merit further discussion. We set the fiscal rule coefficient, γ,
to 0.038, following Bianchi et al. (2023). This parameter represents the repayment rate of
deficits, which, in turn, governs the mean reversion in public debt. We set the inflation-
neutral debt level, bn, to 0.7683× 4 so that the debt-to-quarterly-GDP ratio in 2019Q4 was
at its neutral level. Thus, under our calibration, the sticky-inflation channel was muted
before the pandemic.

We set the probability of a monetary-fiscal reform, λ, to 0.015 which translates into
an annual probability of 6% or, equivalently, a probability of observing a monetary-fiscal
reform once every 15 years. This choice is consistent with the inflation disaster risk in
Hilscher et al. (2022).25

The duration of the fiscal consolidation phase, T ∗, governs the pass-through from the
debt-gap to inflation. We set T ∗ to 16 quarters so that the implied pass-through is consis-
tent with the empirical impulse responses to fiscal events in Hazell and Hobler (2024).26

25Recall that this parameter represents the likelihood that the economy will experience an inflation burst.
Using inflation option prices, Hilscher et al. (2022) report probabilities that inflation will exceed 4% − 6%
thresholds.

26That paper uses electoral outcomes in the senate race in Georgia to proxy for the expectation of the
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(a) Fiscal Shock (b) Cost-Push Shock

(c) Monetary Shock (d) Bond-Valuation Shock

Figure 9: COVID-19 Shock Decomposition: The Shocks

Finally, we assume that the monetary, term premium and fiscal shocks are i.i.d., while
the cost-push shock follows an AR(1) process. Notice that even though the monetary
shock is i.i.d, the inertial monetary rule induces a high degree of persistence. Assuming
that the fiscal shock is i.i.d. captures the fact that the fiscal expansion post-COVID was
perceived as a one time event. On the contrary, for the cost-push shock we follow the
literature and assume an autoregressive coefficient of 0.83 (see Bocola et al., 2024). We set
the standard deviation of the monetary and term-premium shocks to 0.18% per year, the
fiscal shock to 1% per year, and the cost-push shock to 2.67% per year. Our results are
insensitive to alternative calibrations of the standard deviations.

Biden stimulus plan. Their study shows a pass-through of 0.18% inflation over the next 2 years to a 1%
increase in the deficit-to-GDP ratio.
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Shock decomposition. Next, we conduct a shock decomposition analysis using histor-
ical time series data for the market value of debt to GDP ratio, primary deficits to GDP
ratio, inflation, and nominal policy rates—see Figure 8. To understand the exercise, it
is useful to discuss how the shocks are identified. The fiscal shock is directly inferred
from the path of primary surpluses; the monetary shock is identified as deviations from
the Taylor rule; the bond-valuation shock is directly extracted from the government debt
path, given the fiscal rule, the primary deficits, and the path of nominal rates; finally,
the exogenous cost-push shock is identified through the Phillips curve implied by the
model.27

Figure 9 presents the identified structural shocks. The fiscal shock (Panel a), measured
as a percentage of GDP, exhibited a significant surge in 2020Q2. This was primarily driven
by an increase in government spending coupled with a contraction in GDP, resulting in a
fiscal shock of almost 13% of GDP. Following this period, the fiscal shock remained mildly
positive, except for 2020Q3, which was influenced by a GDP rebound. The cost-push
shock (Panel b), measured in units of the annual inflation rate, was negative throughout
2020 but turned positive thereafter, peaking in 2022Q2 when they contributed an addi-
tional 5 percentage points to the annualized inflation rate. The monetary shock (Panel c),
expressed in units of the annualized policy rate, was mildly positive in 2020, when the
policy rate was at the zero lower bound. However, it became significantly negative as the
inflation rate began to rise, implying a substantial deviation from the Taylor rule. Lastly,
the bond-valuation shock (Panel d) closely mirrored the monetary shock, indicating that
it was largely driven by valuation effects of long-term bonds and other Fed operations.
Our shock-decomposition results are consistent with the findings in Rubbo (2024). Using
disaggregated price data, she concludes that the disinflation in 2020 was mainly driven
by industry-specific shocks, while the surge in inflation in 2021 is mainly explained by
aggregate factors, such as monetary and fiscal policy.

The effect of the shocks on the main macroeconomic variables is illustrated in Figure
10. Panels (a) through (c) display the contribution of shocks to the paths of government
debt path, inflation, and nominal policy rates, respectively. We report the debt-to-GDP
ratio as deviations from its neutral level (2019Q4), the inflation rate as deviations from
a 2% inflation target, and the nominal rate as annualized percentage points. Next, we
describe how the shocks influenced the dynamics of each of these variables.

Government Debt: A key feature of the debt-to-GDP path is the sharp increase during
the second quarter of 2020, following the onset of the pandemic. This spike is primarily

27Since shocks are inferred directly from the data series, the Kalman filter optimizes the initial conditions
to best fit the shock decomposition—the initial conditions’ quantitative contribution is minor.
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(a) Government Debt to GDP (b) Inflation

(c) Federal Funds Rate

Figure 10: COVID-19 Shock Decomposition: Government Debt, Inflation, and Fed Funds
Rate

driven by abnormally large fiscal shocks, as government spending surged in response to
the crisis. Additionally, the bond-valuation shock, which captures the flattening of the
yield curve and other changes in the sources of government funding, contributed to the
increase in market debt. Cost-push shocks had a smaller impact, predominantly through
a reduction in inflation during the early phase of the pandemic.

Monetary policy played a limited role in the initial stages of the crisis. In 2020Q2,
monetary policy was constrained by the zero lower bound in its ability to offset defla-
tionary pressures. As the pandemic progressed, fiscal shocks continued to expand, es-
pecially during the quarters following 2021Q1, which coincided with the fiscal stimulus
measures implemented by the Biden administration. The contribution of fiscal shocks
to debt levels remained significant throughout this period. By 2021Q3, monetary policy
shocks substantially contributed to reducing government debt. How so becomes clear
from the decomposition of inflation and policy rates.

Inflation: Panel (b) presents the decomposition of inflation. The cost-push shock had a
significant deflationary impact in 2020Q2, resulting in an annualized inflation rate of -5%.
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(a) Federal Funds Rate (b) Public Debt to GDP (c) Inflation

Figure 11: COVID-19 Counterfactual Monetary Policy

This deflationary trend persisted until the end of 2020. By 2021, the effect of these shocks
reversed, likely arising from supply bottlenecks and the Ukranian war, as suggested by
other studies.28 By 2023Q4, the cost-push shocks began to dissipate. During this period,
the sticky-inflation component (represented by the backslash bars in the figure) becomes
more prominent. Sticky inflation arose due to the persistent fiscal deficits, contributing
to debt accumulation. As debt deviated further from its target, inflation expectations
gained momentum, amplifying inflationary pressures. According to our model, the fis-
cal shock, though short-lived, contributed almost 5% to annual inflation throughout the
period. That inflation started to stabilize in 2022 can be attributed to the deviations of
monetary policy from the prescriptions of the Taylor rule.

Monetary Policy Rates: Starting from 2020Q4, the Fed deviated from the Taylor rule
and stayed “behind the curve.” Indeed, Panel (c) indicates that nominal rates should
have been much higher given the cost-push and fiscal shocks. However, the most notable
aspect of the decomposition is that despite the expansionary stance of monetary policy—
see Figure 9, Panel (c)—, the effect on inflation was deflationary (see the slash bars in
Panel b). This apparent paradox is nothing but the sticky-inflation channel at work. Be-
cause the lower policy rates eased the debt burden, as shown in Figure 10, Panel (a), the
Fed indirectly mitigated the sticky-inflation component in the Phillips curve. Lower debt
levels helped temper inflation expectations, thus counteracting the inflationary pressures
from fiscal and cost-push shocks.

Counterfactuals. Using the filtered shocks, we simulate a counterfactual scenario in
which the Fed would have followed the Taylor rule, turning off the deviations from it as
well as the bond-valuation shock, and keeping the fiscal shock and the cost-push shock

28Guerrieri, Lorenzoni, Straub and Werning (2022) show that shocks that asymmetric sectorial shocks can
manifest as cost-push shocks in the New Keynesian model.
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on. This counterfactual analysis allows us to explore what would have happened to debt
and inflation if the Fed had responded more aggressively during the inflation surge, as
advised by its critics. The results are shown in Figure 11.

Panel (a) illustrates the actual (solid) and counterfactual (dashed) nominal interest
rate paths. Had the Fed adhered to the Taylor principle, nominal rates would have been
reduced more rapidly in the early phases of the pandemic and increased much more
aggressively, given the rising inflation starting in 2020Q4. This more forceful response,
while countering inflation, would have significantly increased the burden of government
debt, as shown in Panel (b). The more aggressive stance would have led to a more persis-
tent increase in the debt-to-GDP ratio due to the higher debt servicing cost.

Interestingly, the counterfactual inflation path shows that, despite the more aggressive
anti-inflationary policy, inflation would have actually been significantly higher. Again,
the apparent paradox arises from the interaction of two opposing forces: the reduction
in inflation through lower demand stimulus and the countervailing effect of the sticky-
inflation component, amplified by the larger debt burden. Thus, while the Taylor rule
would have curbed demand-driven inflation, the resulting increase in debt would have
fueled inflationary pressures through the fiscal channel, ultimately offsetting the benefits
of the rule’s tighter policy.

Given the optimal policy prescriptions derived in the previous section, we conclude
that the Fed’s decision to stay “behind the curve” was appropriate. Our counterfactual
shows that adhering to the Taylor rule would have resulted in suboptimal outcomes,
with higher debt and moderate inflation. All in all, the exercise shows that admitting
the possibility that inflation expectations can be dragged by debt alters the conventional
wisdom regarding the optimal response to monetary policy.

It is important to note that the Taylor rule does not necessarily indicate that the Fed
intentionally acted to ease the debt burden. Rather, the Fed’s gradualism doctrine, charac-
terized by measured responses to unfolding events, aligned well with the optimal policy
in this context. Our model indicates that the Fed’s decision to resist calls for a faster
tightening of monetary policy was ultimately the right course of action.

6. Conclusion

This paper offers new insights regarding fiscal-monetary interactions in New Keynesian
models. First, we demonstrated that in an environment where monetary accommodation
is anticipated, attempts to curb inflation can backfire, as inflation expectations linked to
debt levels create “sticky inflation.” Second, we showed that due to this stickiness, opti-
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mal policy should balance inflation and debt objectives, often keeping real interest rates
low after fiscal shocks.

In our analysis, we assumed that economic agents are opinionated and they are not
easily persuaded by the monetary authority. In particular, we did not explore the possibil-
ity that early anti-inflation efforts signal that monetary policy will resist future inflation-
ary financing. However, without signaling effects, such efforts are futile. Understanding
how medium-term inflation expectations respond to signaling, possibly by incorporating
policy stance attention as in Bassetto and Miller (2022), is essential to complete the story.

Understanding sticky inflation is particularly relevant in today’s high-debt environ-
ment. Sticky inflation rationalizes the repeated failures to curb inflation in countries like
Argentina, Brazil, and Turkey, where orthodox central bankers often raised real interest
rates with limited long-term success. These episodes suggest that temporary measures
are unlikely to overcome sticky inflation unless expectations of monetary accommoda-
tion dissipate. We hope developed economies pay attention to this lesson.
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A. Derivations

A.1 Derivations for Section 2

Households. The household problem is given by

Vt(Bt) = max
[Cs,Ns]s≥t

Et

[∫ t∗

t
e−ρ(s−t) [u(Cs)− h(Ns)] ds+ e−ρ(t

∗−t)V ∗
t∗(B

∗
t )

]
, (33)

subject to

Ḃt = (it − πt)Bt +
Wt

Pt
Nt +Dt + Tt − Ct, (34)

and a No-Ponzi condition, where t∗ denotes the arrival time for a Poisson process with intensity

λ ≥ 0, Bt denotes the real valued of bonds held by households, Wt is the nominal wage, Pt is the

price level, Dt are dividends payed by firms, Tt denotes fiscal transfers.

The HJB equation for this problem is given by

ρV = u(C)− h(N) + V̇ + VB

[
(i− π)B +

W

P
N + T − C

]
+ λ[V ∗ − V ], (35)

where V̇ denotes the time derivative of the value function conditional on no-switching.

The first-order conditions are given by

u′(C) = VB, h′(N) = VB
W

P
. (36)

The envelope condition is given by

ρVB = VB(i− π) + V̇B + VBB

[
(i− π)B +

W

P
N + T − C

]
+ λ[V ∗

B − VB]. (37)

Combining the envelope condition with the optimality condition for consumption, we obtain

0 = (i− π − ρ) +
u′′(C)C

u′(C)

Ċt
Ct

+ λ

[
u′(C∗)

u′(C)
− 1

]
⇒ Ċ

C
= σ−1(i− π − ρ) +

λ

σ

[
u′(C∗)

u′(C)
− 1

]
, (38)

where σ = −u′′(C)C
u′(C) .

The optimality condition for labor can be written as

h′(N)

u′(C)
=
W

P
. (39)

Firms. There are two types of firms in the economy: final-goods producers and intermediate-

goods producers. Final goods are produced by competitive firms according to the production
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function Yt =
(∫ 1

0 Y
ϵ
ϵ−1

i,t di
) ϵ−1

ϵ
, where Yi,t denotes the output of intermediate i ∈ [0, 1]. The de-

mand for intermediate i is given by Yi,t =
(
Pi,t
Pt

)−ϵ
Yt, where Pi,t is the price of intermediate i,

Pt =
(∫ 1

0 P
1−ϵ
i,t di

) 1
1−ϵ is the price level, and Yt is the aggregate output.

Intermediate-goods producers have monopoly over their variety and operate the technology

Yi,t = AtNi,t, where Ni,t denotes labor input. Firms are subject to quadratic adjustment costs on

price changes, so the problem of intermediate i is given by

Qi,t(Pi) = max
[πi,s]s≥t

Et

[∫ t∗

t

ηs
ηt

(
Pi,s
Pi,t

Yi,s −
Ws

Ps

Yi,s
As

− φ

2
π2i,s

)
ds+

ηt∗

ηt
Q∗
i,t(P

∗
i,t)

]
, (40)

subject to Yi,t =
(
Pi,t
Pt

)−ϵ
Yt and Ṗi,t = πi,tPi,t, given Pi,t = Pi and ηt = e−ρtu′(Ct), where φ is the

adjustment cost parameter.

The HJB equation for this problem is

0 = max
πi,t

ηt

(
Pi,t
Pt

Yi,t −
Wt

Pt

Yi,t
A

− φ

2
π2i,t

)
dt+ Et[d(ηtQi,t)], (41)

where Et[d(ηtQi,t)]
ηtdt

= −(it − πt)Qi,t +
∂Qi,t
∂Pi,t

πi,tPi,t +
∂Qi,t
∂t + λ

η∗t
ηt

[
Q∗
i,t −Qi,t

]
.

The first-order condition is given by

∂Qi,t
∂Pi

Pi,t = φπi,t.

The change in πt conditional on no switching in state is then given by(
∂2Qi,t
∂t∂Pi

+
∂2Qi,t
∂P 2

i

πi,tPi,t

)
Pi,t +

∂Qi,t
∂Pi

πi,tPi,t = φπ̇i,t. (42)

The envelope condition with respect to Pi,t is given by

0 =

(
(1− ϵ)

Pi,t
Pt

+ ϵ
Wt

PtA

)(
Pi,t
Pt

)−ϵ Yt
Pi,t

+
∂2Qi,t
∂t∂Pi

+
∂2Qi,t
∂P 2

i

πi,tPi,t+

∂Qi,t
∂Pi

πi,t − (it − πt)
∂Qi,t
∂Pi

+ λ
η∗t
ηt

(
∂Q∗

i,t

∂Pi
− ∂Qi,t

∂Pi

)
. (43)

Multiplying the expression above by Pi,t and using Equation (42), we obtain

0 =

(
(1− ϵ)

Pi,t
Pt

+ ϵ
Wt

PtA

)(
Pi,t
Pt

)−ϵ
Yt + φπ̇t − (it − πt)φπi,t + λφ

η∗t
ηt

(
π∗i,t − πi,t

)
.
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Rearranging the expression above, we obtain the non-linear New Keynesian Phillips curve

π̇t = (it − πt)πt + λ
η∗

ηt
(πt − π∗t )−

ϵφ−1

A

(
Wt

Pt
− (1− ϵ−1)A

)
Yt.

Government and market clearing. The government flow budget constraint is given by

Ḃg
t = (it − πt)B

g
t + Tt, (44)

where Bg
t denotes the real value of government debt. The government must also satisfy the No-

Ponzi condition limT→∞ Et[ηTBg
T ] = 0.

The market clearing condition is given by

Ct = Yt, Nt =

∫ 1

0
Ni,tdi, Bt = Bg

t . (45)

A.2 Derivations for Section 3

In this section, we revisit our three policy experiments in the context of the more general version

of the model, which includes households’ expectation effects and a debt-stabilization term. In this

case, the dynamic system describing the evolution of output, inflation, and debt is given by

ẋt = rt − ρ+ λhxt − λh(bt − bn) (46)

π̇t = (ρ+ λf )πt − κxt − λfκΦ(bt − bn) (47)

ḃt = rt − ρ− γ(bt − bn) + ψt. (48)

Output gap stabilization. Consider first the case of output-gap stabilization, so xt = 0 for all

t. This requires that the interest rate is given by

rt − ρ = λh(bt − bn). (49)

The law of motion of debt is then given by

ḃt = − (γ − λh) (bt − bn) + ψt. (50)

Solving the differential equation above, we obtain

bt − bn = e−(γ−λh)t(b0 − bn) +

∫ t

0
e−(γ−λh)(t−s)ψsds. (51)
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Assuming ψt = e−θψtψ0, we obtain

bt − bn = e−(γ−λh)t(b0 − bn) +
e−(γ−λh)t − e−θψt

θψ − (γ − λh)
ψ0. (52)

Notice that bt converges back to the steady state if γ > λh.

Inflation is given by

πt = λfκΦ

∫ ∞

t
e−(ρ+λf )(s−t)(bs − bn)ds. (53)

Plugging the value of bt into the expression above, we obtain

πt = λfκΦ

[
e−(γ−λh)t

ρ+ λf + γ − λh

(
b0 − bn +

ψ0

θψ − (γ − λh)

)
− e−θψt

ρ+ λf + θψ

ψ0

θψ − (γ − λh)

]
. (54)

Notice that debt and inflation depend on γ and λh only through their difference. Hence, if we

assume that γ = λh > 0, we obtain the same values of bt and π if we assume γ = λh = 0, which

corresponds to the case in Section 3. If γ > λh, then eventually debt and inflation eventually return

to their steady-state levels.

Inflation stabilization. Next, we will consider the case of inflation stabilization. Suppose the

real rate is given by rt − ρ = e−θrt(r0 − ρ). In this case, debt is given by:

bt − bn = e−γt(b0 − bn) +
e−γt − e−θψt

θψ − γ
ψ0︸ ︷︷ ︸

bpt

+
e−γt − e−θrt

θr − γ
(r0 − ρ)︸ ︷︷ ︸

brt

. (55)

The first term corresponds to the level of debt if the monetary authority implements a passive

policy of setting the real rate equal to its natural level at all periods, rt = ρ, and the second term

captures the impact on debt of changing the real rate.

The output gap is given by

xt = −
∫ ∞

t
e−λh(s−t)(rs − ρ)ds+ λh

∫ ∞

t
e−λh(s−t)(bs − bn)ds. (56)

The output gap can be expressed as follows

xt = xpt −
rt − ρ

λh + θr
+

λh
θr − γ

[
e−γt

λh + γ
− e−θrt

λh + θr

]
(r0 − ρ), (57)

where

xpt = λh

[
e−γt

λh + γ

(
b0 − bn +

ψ0

θψ − γ

)
− ψt

(λh + θψ)(θψ − γ)

]
. (58)

There are now two opposing effects on the output gap. Higher rates reduce the output gap

through the usual intertemporal substitution channel. However, higher real rates push debt up,
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which creates a positive output gap in the inflationary-finance phase. This expectation tends to

increase the output gap today. Therefore, the presence of this expectation attenuates the response

of output to higher real rates.

Inflation is given by

πt = κ

∫ ∞

t
e−(ρ+λf )(s−t)xsds+ λfκΦ

∫ ∞

t
e−(ρ+λf )(s−t)(bs − bn)ds. (59)

Inflation is given by

πt = πpt + Ft + Jxt + Jbt , (60)

where πpt ≡ κ
∫∞
t e−(ρ+λf )(s−t)xpsds+ λfκΦ

∫∞
t e−(ρ+λf )(s−t)bpsds, and

Ft ≡ − κ

λh + θr

rt − ρ

ρ+ λf + θr
< 0 (61)

Jxt ≡ κλh
θr − γ

[
e−γt

(λh + γ)(ρ+ λf + γ)
− e−θrt

(λh + θr)(ρ+ λf + θr)

]
(r0 − ρ) > 0 (62)

Jbt ≡
κλfΦ

θr − γ

[
e−γt

ρ+ λf + γ
− e−θrt

ρ+ λf + θr

]
(r0 − ρ) > 0. (63)

The fight-inflation term dominates at period zero if the following condition is satisfied

1

ρ+ λf + θr
>

λfΦ

ρ+ λf + γ

λh + θr
ρ+ λf + θr

+
λh

θr − γ

[
λh + θr

(λh + γ)(ρ+ λf + γ)
− 1

ρ+ λf + θr

]
. (64)

We can write the expression above as follows

θr <
ρ+ λf + γ − λh

[
λfΦ+

λh−γ+ρ+λf
λh+γ

]
λfΦ+ λh

λh+γ

. (65)

Notice that we recover the condition for the fight inflation to dominate at t = 0 when λh = γ = 0.

If θr > γ, such that the response of taxes to government debt is not too strong, then the jump

inflation term eventually dominates, consistent with the stepping-on a-rake result.

Debt stabilization. We consider next the case where the monetary authority stabilizes govern-

ment debt, bt = 0. For simplicity, we focus on the case bn = 0. The real interest rate is then given

by rt − ρ = −ψt. This corresponds to the previous case with r0 − ρ = −ψ0 and θr = θψ. Given the

low real rate, for λh sufficiently small, we have a positive output gap and inflation on impact.

B. Proofs

Proof of Proposition 1
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Proof. We first show that fiscal policy is passive, that is, for any Lebesgue integrable path
for (xt, πt, it), government debt is bounded if and only if γ ≥ 0. Note that in the fiscal
consolidation phase and the inflationary-finance phase, government debt is bounded by
construction. In the fiscal-expansion phase, from equation (15) we get

lim
t→∞

bt = lim
t→∞

e−γtb0 + lim
t→∞

∫ t

0

e−γ(t−s)(is − πs − ρ+ ψs)ds.

Notice that since γ ≥ 0, e−γt ≤ 1 for all t ≥ 0. Then

lim
t→∞

bt = lim
t→∞

e−γtb0+ lim
t→∞

∫ t

0

e−γ(t−s)(is−πs−ρ+ψs)ds ≤ lim
t→∞

b0+ lim
t→∞

∫ t

0

(is−πs−ρ+ψs)ds <∞,

where the last inequality follows from (it, πt) being Lebesgue integrable.
For I., notice that the dynamic system is given by

π̇t

ẋt

ḃt

 =


(ρ+ λf ) −κ −λfκΦ

(ϕ− 1) λh −λh

(ϕ− 1) 0 − (γ − ρ)




πt

xt

bt

+


λfκΦb

n

ut + λhb
n

ut + ψt

 .

The equilibrium is uniquely determined if the matrix above has two eigenvalues with
positive real components and an eigenvalue with a non-positive real component. The
eigenvalues of the system above satisfies the characteristic equation:

f(λ) ≡ λ3+[γ − (ρ+ λf + λh)]︸ ︷︷ ︸
≡a

λ2+[(ϕ− 1)κ (1 + λfΦ) + λh (ρ+ λf )− γ (ρ+ λf + λh)]︸ ︷︷ ︸
≡b

λ+

[γ (ρ+ λf )λh + (ϕ− 1)κ [γ − (λh + λhλfΦ)]]︸ ︷︷ ︸
≡c

= 0.

Using Descartes’ rule of signs, we get that c > 0 is a necessary condition for determi-
nacy. To see this, suppose c < 0. Then, two options exist for the number of sign changes
of f(λ): one and three. This implies that there can be either 1 or 3 roots with a positive
real part. Since we need two roots with positive real part for determinacy, we can rule out
those cases.

Next, we show that c > 0 is a sufficient condition for determinacy. Because γ <

ρ+ λf + λh, a < 0. Then, we are guaranteed two sign changes. Using the Routh-Hurwitz
criterion, not all roots of f are negative, completing the proof.

Part II. is immediately true by construction.
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Proof of Proposition 2

Proof. From equation (17), given xt = 0 and πJt = κΦ(bt − bn), inflation is given by

πt = κλΦ

∫ ∞

t

e−(ρ+λ)(s−t)(bs − bn)ds. (66)

Debt is given by bs = b0 +
1−e−θψs

θψ
ψ0 = bt +

1−e−θψ(s−t)

θψ
ψt. We can then write inflation as

follows:

πt =
κλΦ

ρ+ λ

[
bt − bn +

ψt
ρ+ λ+ θψ

]
. (67)

The limit of the expression above as t → ∞ is limt→∞ πt =
κλΦ
ρ+λ

(blr − bn). Differentiating
the expression above with respect to time, we obtain

π̇t =
κλΦ

ρ+ λ

[
ψt −

θψψt
ρ+ λ+ θψ

]
=

κλΨ

ρ+ λ+ θψ
ψt > 0. (68)

Proof of Lemma 1.

Proof. From equation (17), inflation is given by

πt = κ

∫ ∞

t

e−(ρ+λ)(s−t)xsds+ λκΦ

∫ ∞

t

e−(ρ+λ)(s−t)(bs − bn)ds, (69)

where xt = − 1
θr
(rt − ρ) and bt = bogt + 1−e−θrt

θr
(r0 − ρ).

We can then write inflation as follows:

πt = πogt − κ(rt − ρ)

θr(ρ+ λ+ θr)︸ ︷︷ ︸
Ft

+
κλΦ

θr

[
1

ρ+ λ
− e−θrt

ρ+ λ+ θr

]
(r0 − ρ)︸ ︷︷ ︸

Jt

, (70)

where πogt = κλΦ
∫∞
t
e−(ρ+λ)(s−t)(bogs − bn)ds.

Proof of Proposition 3.

Proof. The fight-inflation strategy is successful at bringing inflation down at t = 0 if:

−F π
0 > Jπ0 ⇐⇒ κ(r0 − ρ)

θr(ρ+ λ+ θr)
>
κλΦ

θr

[
1

ρ+ λ
− 1

ρ+ λ+ θr

]
(r0 − ρ).
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We can write the inequality above as follows:

1 >
λΦ

ρ+ λ
θr ⇐⇒ θr <

ρ+ λ

λΦ
. (71)

Notice that limt→∞ F π
t = 0 and limt→∞ Jπt = κλΦ

θr(ρ+λ)
(r0 − ρ) > 0. Hence, there exits

T̂ > 0 such that for t > T̂ the following inequality holds:

−F π
t < Jπt . (72)

Hence, πt > πogt for t > T̂ .

Proof of Proposition 4

Proof. The Hamiltonian for problem 1 is given by

Ht = −1

2

[
αx2t + βπ2

t + λΥ(bt − bn)2
]
+ µπ,t [(ρ+ λ)πt − κxt − λκΦ(bt − bn)] + µb,t [rt − ρ+ ψt]

+ µx,t[rt − ρ] + (µx,0 + ξx)(ρ+ λ)x0 + (µπ,0 + ξπ)

[
κx0 +

κ(1 + λΦ)

ρ+ λ
(rt − ρ)

]
, (73)

The dynamics of the co-states are given by

µ̇π,t − (ρ+ λ)µπ,t = βπt − µπ,t(ρ+ λ) (74)

µ̇b,t − (ρ+ λ)µb,t = λΥ(bt − bn) + κλΦµπ,t (75)

µ̇x,t − (ρ+ λ)µx,t = αxt + κµπ,t. (76)

The optimality condition for the real interest rate is

µb,t + µx,t = −ξ, (77)

where ξ ≡ κ(1+λΦ)
ρ+λ

(µπ,0 + ξπ).
The optimality condition for the initial output gap:

(ρ+ λ)(µx,0 + ξx) + κ(µπ,0 + ξπ) = 0. (78)

We will choose ξx = −κµπ,0+ξπ
ρ+λ

, such that µx,0 = 0. We show below that we can set µπ,0 = 0

without loss of generality.
The optimality condition for interest rates imply that µ̇b,t + µ̇x,t = 0. From the law of
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motion of the co-states, we obtain

αxt + λΥ(bt − bn) = κ(1 + λΦ) (µπ,0 − µπ,t) + (ρ+ λ)ξ. (79)

Differentiating the expression above with respect to time, we obtain

α(rt − ρ) + λΥ(rt − ρ+ ψt) = −κ(1 + λΦ)βπt. (80)

Rearranging the expression above, we obtain the real interest rate

rt − ρ = −βκ(1 + λΦ)

λΥ+ α
πt −

λΥ

λΥ+ α
ψt, (81)

and the nominal interest rate is given by

it = ρ+

[
1− β

κ(1 + λΦ)

λΥ+ α

]
πt −

λΥ

λΥ+ α
ψt. (82)

Proof of Propositions 5 and 6

Proof. The proof of Proposition 9 derives the solution to the optimal policy problem for
arbitrary values of α and β. Here, we specialize the general formulas to the case of doves,
β = 0, and hawks α = 0.

Doves. Suppose β = 0. In this case, initial inflation is given by

π0 =
κ

ω

[
αΦ

α + λΥ

λψ0

ω + θψ
+

λΥ

λΥ+ α

|ω|ψ0

(ρ+ λ+ θψ)(ω + θψ)
+ λΦ(b0 − bn)

]
, (83)

Using the fact that b0 = bn and that ω = 0, the expression above simplifies to

π0 =
κ

ω

αλΦ

α + λΥ

ψ0

ω + θψ
. (84)

Inflation is then given by

πt =
κλ(αΦ−Υ)

λΥ+ α

1− e−θψt

(θψ + ω)θψ
ψ0 + π0. (85)

53



The initial value of the output gap is given by

x0 =
λΥ

λΥ+ α

ψ0

ρ+ λ+ θψ
. (86)

The real rate is given by rt − ρ = − λΥ
λΥ+α

ψt, then output gap is given by

xt =
λΥ

λΥ+ α

ψ0

ρ+ λ+ θψ
− λΥ

λΥ+ α

ψ0 − ψt
θψ

. (87)

The government debt is given by

bt =
α

λΥ+ α

ψ0 − ψt
θψ

. (88)

Hawks. Suppose α = 0. In this case, initial inflation is given by

π0 =
κ

θψ + ω

ψ0

ρ+ λ+ θψ
> 0. (89)

Inflation at t is given by

πt = −κ eωt − e−θψt

(θψ + ω)(θψ + ω)
ψ0 + eωtπ0. (90)

Combining the previous two expressions, we obtain

πt = κ
ψt − ω

ρ+λ+θψ
eωtψ0

(θψ + ω)(θψ + ω)
. (91)

Suppose θψ > |ω|, then the numerator is negative for t sufficiently large, and the denomi-
nator is positive, so limt→∞ < 0. If θψ < |ω|, then the numerator is positive for t sufficiently
large, and the denominator is negative, so again limt→∞ < 0.

The derivative of inflation with respect to time is given by

π̇t = −κ ωeωt + θψe
−θψt

(θψ + ω)(θψ + ω)
ψ0 + eωt

κ

θψ + ω

ωψ0

ρ+ λ+ θψ
(92)

= − κ

θψ + ω

[
θψ

θψ + ω
ψt −

|ω|
θψ + ω

ωeωtψ0

ρ+ λ+ θψ

]
. (93)

The term in brackets is always positive, so π̇0 < 0. Notice that inflation is decreasing
at t = 0. If θψ < |ω|, so the fiscal shock is very persistent, then inflation is eventually
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increasing. If θψ > |ω, then inflation is decreasing even for large t.
The initial output gap

x0 =
ω

θψ + ω

[
1

ρ+ λ+ θψ
+

1

ω

]
ψ0. (94)

The real interest rate is given by rt− ρ = − β
λΥ
κ(1+λΦ)πt−ψt. Output gap is given by

xt = x0 − β
κ(1 + λΦ)

λΥ
pt −

ψ0 − ψt
θψ

. (95)

The government debt is given by

bt = −βκ(1 + λΦ)

λΥ
pt. (96)

Debt is initially decreasing, as ḃt = −β κ(1+λΦ)
λΥ

π0 < 0. The price level is given by

pt = κ

ψ0−ψt
θψ

− ω
ρ+λ+θψ

1−eωt
|ω| ψ0

(θψ + ω)(θψ + ω)
. (97)

Taking the limit as t→ ∞, we obtain

lim
t→∞

pt = κ

1
θψ

+ ω
ρ+λ+θψ

1
ω

(θψ + ω)(θψ + ω)
= κ

ρ+ λ

(θψ + ω)(θψ + ρ+ λ)θψ

1

ω
< 0. (98)

Therefore, limt→∞ bt > 0.

Proof of Proposition 7.

Proof. The planner’s objective is given by

P0(b0) = −1

2

∫ ∞

0

e−(ρ+λ+λ)t
[
αx2t + βπ2

t + λΥ(bt − bn)2
]
dt+

∫ ∞

0

e−(ρ+λ+λ)tλPt(bt)dt. (99)

The planner’s problem consists of maximizing the objective above subject to the con-
straints

π̇t = (ρ+ λ)πt − κxt − λκΦ(bt − bn), ḃt = rt − ρ+ ψt, ẋt = rt − ρ.

We also include a penalty on π0 and x0, as in the case with full commitment.
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Optimality conditions The optimality conditions are given by

µ̇π,t − (ρ+ λ+ λ)µπ,t = βπt − (ρ+ λ)µπ,t (100)

µ̇b,t − (ρ+ λ+ λ)µb,t = λΥ(bt − bn)− λPb,t(bt) + λκΦµπ,t (101)

µ̇x,t − (ρ+ λ+ λ)µx,t = αxt + κµπ,t, (102)

where Pb,t(bt) denotes the partial derivative of Pt(bt) with respect to debt.
The optimality condition for the interest rate is given by

µx,t + µb,t = −ξ, (103)

where ξ ≡ κ(1+λΦ)
ρ+θ

ξπ.
The optimality condition for x0 is given by

µx,0 = 0. (104)

Standard envelope arguments imply that

µb,t = Pb,t(bt). (105)

The discretion limit. Consider the limit as λ → ∞, so each planner has commitment
only over an infinitesimal amount of time. In the limit, the co-states on πt and xt are given
by

µπ,t = 0, µx,t = 0. (106)

Integrating the expression for µx,t forward, we obtain

µx,t = −
∫ ∞

t

e−(ρ+λ+λ)(s−t) [αxs + κµπ,s] ds⇒ lim
λ→∞

λµx,t = −αxt, (107)

using the fact that limλ→∞ µπ,t = 0. Hence, from the optimality condition for x0, we obtain
x0 = 0. Differentiating the optimality condition for the interest rate with respect to time,
we obtain

(ρ+ λ+ λ)ξ = αxt + λΥ(bt − bn)− λµb,t + κ(1 + λΦ)µπ,t, (108)

where we used the envelope condition for bt
Given µb,t = −ξ − µx,t, and combining the previous two expressions, we obtain

(ρ+ λ)ξ = λΥ(bt − bn). (109)
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Therefore, the interest rate is given by

rt − ρ = −ψt. (110)

Proof of Proposition 8.

Proof. The dynamics under the optimal policy are characterized by the conditions:

π̇t = (ρ+ λ)πt − κxt − λκΦ(bt − bn) (111)

ḃt = rt − ρ− γ(bt − bn) + ψt (112)

ẋt = rt − ρ+ θhxt − θ∗h(bt − bn) (113)

µ̇π,t = βπt (114)

µ̇b,t = (ρ+ λ)µb,t + λΥ(bt − bn) + κλΦµπ,t (115)

µ̇x,t = (ρ+ λ)µx,t + αxt + κµπ,t, (116)

where the real rate is given by

rt − ρ = −βκ(1 + λΦ)

λΥ+ α
πt −

λΥ

λΥ+ α
ψt, (117)

given the initial value of debt, b0, and the boundary conditions µx,0 = µπ,0 = 0.
Consider the case without a fiscal shock, ψt = 0, and denote the co-states in this case

with no shocks by µnsx,t and µnsπ,t. The optimal policy under the timeless perspective cor-
responds to the solution to the system above when we replace the initial conditions by
the long-run values of these multipliers: µx,0 = limt→∞ µnsx,t and µπ,0 = limt→∞ µnsπ,t (see
Giannoni and Woodford (2017) for a discussion in the context a general model). This is
equivalent to the problem of a planner who started its planning in a distant past, so the
multipliers had time to converge to their long-run values.

Even without shocks, the limits limt→∞ µnsx,t and limt→∞ µnsπ,t will not be equal to zero,
provided that b0 ̸= bn. However, in the case b0 = bn, the solution to the system above in
the absence of shocks is simply πt = xt = bt = µπ,t = µx,t = µb,t = 0. Hence, we have that
limt→∞ µnsx,t = 0 and limt→∞ µnsπ,t = 0, so the boundary conditions for the problem under
the timeless perspective coincide with the time-zero commitment solution.

Proof of Proposition 9.
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Proof. The matrix of eigenvectors and its inverse are given by

V =

κ(1+λΦ)
ω

κ(1+λΦ)
ω

1 1

 , V −1 =
ω|ω|

(ω − ω)κ(1 + λΦ)

−1 κ(1+λΦ)
ω

1 κ(1+λΦ)
|ω|

 . (118)

LetZt = [πt, bt]
′ denote the vector of endogenous variables,A the matrix of coefficients,

and Ut the vector of coefficients. We can then write the dynamic system as Żt = AZt +Ut.
We can write the matrix of coefficients as A = V ΛV −1, where Λ is a diagonal matrix with
the eigenvalues. Using the matrix eigendecomposition, we can decouple the system using
the transformation: zt ≡ V −1Zt and ut ≡ V −1Ut. This gives us the system of decoupled
differential equations:

ż1,t = ωz1,t + u1,t, ż2,t = ωz2,t + u2,t. (119)

Integrating the first equation forward and the second backwards, we obtain

z1,t = −
∫ ∞

t

e−ω(s−t)u1,sds, z2,t = eωtz2,0 +

∫ t

0

eω(t−s)u2,sds. (120)

Rotating the system back to its original coordinates, we obtain

πt =
κ(1 + λΦ)

|ω|

∫ ∞

t

e−ω(s−t)u1,sds+
κ(1 + λΦ)

ω

[
eωtz2,0 +

∫ t

0

eω(t−s)u2,sds

]
, (121)

and

bt − bn = −
∫ ∞

t

e−ω(s−t)u1,sds+ eωtz2,0 +

∫ t

0

eω(t−s)u2,sds. (122)

The disturbances u1,t and u2,t are given by

u1,t =
|ω|

ω − ω

[
α

λΥ+ α
ψt −

ω

(1 + λΦ)
(ψ̂t + b0 − bn − x0)

]
(123)

u2,t =
ω

ω − ω

[
α

λΥ+ α
ψt +

|ω|
(1 + λΦ)

(ψ̂t + b0 − bn − x0)

]
, (124)

where ψ̂t = 1−e−θψt
θψ

ψ0 if θψ > 0 and ψ̂t = ψ0t if θψ = 0.
The forward integral of u1,t is given by

∫ ∞

t

e−ω(s−t)u1,sds =
|ω|

ω − ω

[(
α

λΥ+ α
− ω

(1 + λΦ)

1

θψ

)
ψt

ω + θψ
−

ψ0

θψ
+ b0 − bn − x0

1 + λΦ

]
.(125)
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The backward integral of u2,t is given by∫ t

0
eω(t−s)u2,sds =

ω

ω − ω

[(
α

λΥ+ α
− |ω|

(1 + λΦ)

1

θψ

)
eωt − e−θψt

θψ + ω
ψ0 +

|ω|
(1 + λΦ)

(
ψ0

θψ
+ b0 − bn − x0)

1− eωt

|ω|

]
(126)

From the expression for z1,0, we obtain

π0 =
κ(1 + λΦ)

ω

[
(b0 − bn) +

ω − ω

|ω|

∫ ∞

0

e−ωtu1,tdt

]
=

κ(1 + λΦ)

ω

[
(b0 − bn) +

(
α

λΥ+ α
+

ω

(1 + λΦ)

1

θψ

)
ψ0

ω + θψ
−

ψ0

θψ
+ b0 − bn − x0

1 + λΦ

]
.(127)

We can then write initial inflation as follows:

π0 =
κ

ω

[
λΦ(b0 − bn) + x0 +

αΦ−Υ

α + λΥ

λψ0

ω + θψ

]
.

The initial value for z2,t is given by

z2,0 =
ω

ω − ω

[
|ω|

κ(1 + λΦ)
π0 + b0 − bn

]
.

Inflation is then given by

πt =
κ(1 + λΦ)

ω − ω

[(
α

λΥ+ α
+

ω

(1 + λΦ)

1

θψ

)
ψt

ω + θψ
−

ψ0

θψ
+ b0 − bn − x0

1 + λΦ

]
(128)

+
κ(1 + λΦ)

ω − ω

[
eωt

[
|ω|

κ(1 + λΦ)
π0 + b0 − bn

]
+

(
α

λΥ+ α
− |ω|

(1 + λΦ)

1

θψ

)
eωt − e−θψt

θψ + ω
ψ0

]
(129)

+
κ(1 + λΦ)

ω − ω

[
1− eωt

(1 + λΦ)
(
ψ0

θψ
+ b0 − bn − x0)

]
. (130)

After some rearrangement, we obtain

πt =
κλ(αΦ−Υ)

λΥ+ α

eωt − e−θψt

(θψ + ω)(θψ + ω)
ψ0 + eωtπ0. (131)

Boundary conditions. The optimality condition for x0 involves the co-states for x and
π. Solving the equation for µπ,t backward, we obtain

µπ,t = µπ,0 + β

∫ t

0

πsds. (132)
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Solving the equation for µx,t forward, we obtain

µx,0 = −
∫ ∞

0

e−(ρ+θ)t [κµπ,t + αxt] dt (133)

= − κ

ρ+ θ
µπ,0 −

κβ

ρ+ θ

∫ ∞

0

e−(ρ+θ)tπtdt−
∫ ∞

0

e−(ρ+θ)tαxtdt. (134)

The optimality condition for x0 is given by

0 = µx,0 +
κ

ρ+ θ
µπ,0 = −

∫ ∞

0

e−(ρ+θ)t

[
β

ρ+ θ
πt + αxt

]
. (135)

Using the fact that xt = x0 + r̂t, we obtain∫ ∞

0

e−(ρ+θ)txtdt =
x0
ρ+ θ

+
1

ρ+ θ

∫ ∞

0

e−(ρ+θ)t(rt − ρ)dt. (136)

The optimality condition for x0 can then be written as

0 =
α

ρ+ θ
x0 +

1

ρ+ θ

∫ ∞

0

e−(ρ+θ)t

[
κβπt + α

(
−βκ(1 + λΦ)

λΥ+ α
πt −

λΥ

λΥ+ α
ψt

)]
dt. (137)

Rearranging the expression above, we obtain

αx0 = β
κλ(αΦ−Υ)

λΥ+ α

∫ ∞

0

e−(ρ+θ)tπtdt+
αλΥ

λΥ+ α

∫ ∞

0

e−(ρ+θ)tψtdt. (138)

The present discounted value of inflation is given by∫ ∞

0

e−(ρ+θ)tπtdt =
κλ(αΦ−Υ)

(λΥ+ α)(θψ + ω)

ψ0

(ρ+ θ + |λ|)(ρ+ θ + θψ)
+

π0
ρ+ θ + |ω|

. (139)

Combining the previous two equations, we obtain

αx0 =
β

θψ + ω

(
κλ(αΦ−Υ)

λΥ+ α

)2
ψ0

(ρ+ θ + |λ|)(ρ+ θ + θψ)
+ β

κλ(αΦ−Υ)

λΥ+ α

π0
ρ+ θ + |ω|

(140)

+
αλΥ

λΥ+ α

ψ0

ρ+ θ + θψ
. (141)
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Using the fact that π0 = κ
ω

[
λΦ(b0 − bn) + x0 +

αΦ−Υ
α+λΥ

λψ0

ω+θψ

]
, we obtain

x0 =

β
θψ+ω

(
κλ(αΦ−Υ)
λΥ+α

)2
ψ0

(ρ+θ+|ω|)

[
1

ρ+θ+θψ
+ 1

ω

]
+ αλΥ

λΥ+α
ψ0

ρ+θ+θψ
+ β κλ(αΦ−Υ)

λΥ+α
κλΦ(b0−bn)
ω(ρ+θ+|ω|)

α− κβ
ω(ρ+θ+|ω|)

κλ(αΦ−Υ)
λΥ+α

. (142)

Initial inflation is then given by

π0 =
κ

ω

 β
θψ+ω

(
κλ(αΦ−Υ)
λΥ+α

)2
ψ0

(ρ+θ+|ω|)
1

ρ+θ+θψ
+ α2Φ

α+λΥ
λψ0

ω+θψ
+ αλΥ

λΥ+α
|ω|ψ0

(ρ+θ+θψ)(ω+θψ)
+ αλΦ(b0 − bn)

α− κβ
ω(ρ+θ+|ω|)

κλ(αΦ−Υ)
λΥ+α

 .
(143)

Notice that the numerator is positive. The denominator is positive for α large or β large.
In these cases, a fiscal shock leads to more inflation and higher output gap.

Output gap. The output gap is given by

xt = x0 − β
κ(1 + λΦ)

λΥ+ α
pt −

λΥ

λΥ+ α

ψ0 − ψt
θψ

, (144)

where pt =
∫ t
0
πsds.

Government debt. Government debt is given by

bt = −βκ(1 + λΦ)

λΥ+ α
pt +

α

λΥ+ α

ψ0 − ψt
θψ

. (145)
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C. Optimal policy

C.1 The planner’s problem

Planner’s problem. We can write the planner’s problem as follows:

max
{[xt,πt,bt,rt]∞0 }

−1

2

∫ ∞

0

e−(ρ+λ)t
[
αx2t + βπ2

t + λΥ(bt − bn)2
]
dt, (146)

subject to

π̇t = (ρ+ λ)πt − κxt − λκΦ(bt − bn) (147)

ḃt = rt − ρ+ ψt (148)

ẋt = rt − ρ, (149)

given b0 and the initial value for inflation.

The lack of a classical solution. It turns out that a classical solution, where the states
are continuous functions of time, does not exist. The issue of non-existence of a solution
can be seen more clearly in the case β = 0, where inflation drops out of the problem. For
simplicity, assume that b0 = bn = 0. The optimality condition for rt is given by

αxt + λΥbt = 0, (150)

for all t ≥ 0. The optimality condition for x0 is given by

µx,0 = 0 ⇐⇒ −α
∫ ∞

0

e−(ρ+λ)txtdt = 0. (151)

Let (x∗t , b∗t ) denote a candidate solution, where b∗t is a differentiable function of time
satisfying b∗0 = 0. Differentiating the optimality condition for rt with respect to time, we
obtain

rt − ρ = − λΥ

α + λΥ
ψt ⇒ r̂t = − λΥ

α + λΥ
ψ̂t. (152)

As xt = x0 + r̂t, the optimality condition for x0 implies that the following condition must
hold:

x0
ρ+ λ

+

∫ ∞

0

e−(ρ+λ)tr̂tdt = 0 ⇒ x0 =
λΥ

α + λΥ

∫ ∞

0

e−(ρ+λ)tψtdt > 0. (153)
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However, from the optimality condition for the interest rate at t = 0, we obtain:29

αx0 + λΥb0 = 0 ⇒ x0 = 0, (154)

which contradicts the fact that x0 > 0.

Incentive for expropriation. While a classical solution to this problem does not exist, a
generalized solution with discontinuous states exists. In a classical solution, bt is given by

bt =

∫ t

0

(rs − ρ+ ψs)ds (155)

The integral above is equal to zero at t = 0, so b0 = 0. Following the approach in optimal
impulsive control, consider the following generalization:30

bt =

∫ t

0

(rs − ρ+ ψs)ds+

∫
[0,t]

rsdµ, (156)

where µ denotes a Borel measure on R+. For example, if µ is a Dirac measure with weight
on zero, then bt is given by

bt =

∫ t

0

(rs − ρ+ ψs)ds+ r0. (157)

In this case, government debt can immediately jump at zero, provided r0 ̸= 0.

Define r̂t ≡
∫∞
0
(rs − ρ)ds +

∫
[0,t]

rsdµ, so xt = x0 + r̂t and bt = r̂t + ψ̂t. In a classical
solution, r̂t must be an absolutely continuous function satisfying r̂0 = 0, while it is a
bounded variation function in the context of optimal impulsive control, where r̂0 can take
any value. Without the constraint that r̂0 = 0, the planner’s problem becomes particularly
simple:

max
{x0,[r̂t]∞0 }

−1

2

∫ ∞

0

e−(ρ+λ)t

[
α (x0 + r̂t)

2 + λΥ
(
r̂t + ψ̂t

)2
]
dt, (158)

with optimality conditions

αxt + λΥbt = 0, −α
∫ ∞

0

e−(ρ+λ)txtdt = 0. (159)

29Notice that the optimality condition for the interest rate must hold at t = 0. From continuity of xt and
bt, if αxt + λΥbt > 0 for t = 0, there exists t1 > 0 such that this inequality holds for t ∈ [0, t1). By reducing
interest rates in this interval, we can improve the planner’s objective.

30See Arutyunov et al. (2019) for a discussion of optimal impulsive control theory.
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The solution in this case takes the form:

rt − ρ = − λΥ

α + λΥ
ψt, x0 =

λΥ

α + λΥ

∫ ∞

0

e−(ρ+λ)tψtdt, b0 = − α

λΥ
x0. (160)

Hence, government debt jumps immediately down on impact, which requires r0 = − α
λΥ
x0

and µ to be a Dirac measure with weight in zero. Intuitively, the planner has an incentive
to expropriate part of the debt by having the real interest rate be very negative over a
small period (the impulse from the Dirac measure).

C.2 Characterization of the optimal policy

The penalized planner’s problem. To deal with the incentive to expropriate, we intro-
duce a penalty associated with the initial value of each forward-looking variable:

max
{[πt,bt,xt,rt]∞0 }

−1

2

∫ ∞

0

e−(ρ+λ)t
[
αx2t + βπ2

t + λΥ(bt − bn)2
]
dt+ ξxx0 + ξππ0, (161)

subject to

π̇t = (ρ+ λ)πt − κxt − λκΦ(bt − bn), ḃt = rt − ρ+ ψt, ẋt = rt − ρ, (162)

given b0 and the initial value for inflation. We will choose the penalty ξx and ξπ such that
there is no discontinuity in bt at t = 0, and the co-state for the output gap is equal to zero
at t = 0.

Optimality conditions. The Hamiltonian to this problem is given by

Ht = −1

2

[
αx2t + βπ2t + λΥ(bt − bn)2

]
+ µπ,t [(ρ+ λ)πt − κxt − λκΦ(bt − bn)] + µb,t [rt − ρ+ ψt]

+ µx,t[rt − ρ] + (µx,0 + ξx)(ρ+ λ)x0 + (µπ,0 + ξπ)

[
κx0 +

κ(1 + λΦ)

ρ+ λ
(rt − ρ)

]
, (163)

The dynamics of the co-states are given by

µ̇π,t − (ρ+ λ)µπ,t = βπt − µπ,t(ρ+ λ) (164)

µ̇b,t − (ρ+ λ)µb,t = λΥ(bt − bn) + κλΦµπ,t (165)

µ̇x,t − (ρ+ λ)µx,t = αxt + κµπ,t. (166)
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The optimality condition for the real interest rate is

µb,t + µx,t = −ξ, (167)

where ξ ≡ κ(1+λΦ)
ρ+λ

(µπ,0 + ξπ).
The optimality condition for the initial output gap:

(ρ+ λ)(µx,0 + ξx) + κ(µπ,0 + ξπ) = 0. (168)

We will choose ξx = −κµπ,0+ξπ
ρ+λ

, such that µx,0 = 0. We show below that we can set µπ,0 = 0

without loss of generality.

Real and nominal rates. The optimality condition for interest rates imply that µ̇b,t +
µ̇x,t = 0. From the law of motion of the co-states, we obtain

αxt + λΥ(bt − bn) = κ(1 + λΦ) (µπ,0 − µπ,t) + (ρ+ λ)ξ. (169)

Differentiating the expression above with respect to time, we obtain

α(rt − ρ) + λΥ(rt − ρ+ ψt) = −κ(1 + λΦ)βπt. (170)

Rearranging the expression above, we obtain the real interest rate

rt − ρ = −βκ(1 + λΦ)

λΥ+ α
πt −

λΥ

λΥ+ α
ψt, (171)

and the nominal interest rate is given by

it = ρ+

[
1− β

κ(1 + λΦ)

λΥ+ α

]
πt −

λΥ

λΥ+ α
ψt. (172)

Dynamics under the optimal policy. Using the expression for xt = x0 + bt − b0 − ψ̂t, we
can write a dynamic system for πt and btπ̇t

ḃt

 =

ρ+ λ −κ(1 + λΦ)

−β̂ 0


 πt

bt − bn

+

κ(ψ̂t + b0 − bn − x0)

α
λΥ+α

ψt

 , (173)

where β̂ ≡ βκ(1+λΦ)
λΥ+α

and ψ̂t =
1−e−θψt

θψ
ψ0. As b0 is given and π0 can jump, there is a unique

bounded solution to the system above if the system has a positive eigenvalue and a neg-
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ative eigenvalue. The eigenvalues of the system satisfy the condition

(ρ+ λ− ω)(−ω)− β̂κ(1 + λΦ) = 0 ⇒ ω2 − [ρ+ λ]ω − κ(1 + λΦ)β̂ = 0.

Denote the eigenvalues of the system by ω > 0 and ω < 0, where

ω =
ρ+ λ+

√
(ρ+ λ)2 + 4κ(1 + λΦ)β̂

2
, ω =

ρ+ λ−
√

(ρ+ λ)2 + 4κ(1 + λΦ)β̂

2
. (174)

We provide next a characterization of inflation and output gap under the optimal pol-
icy.

Proposition 9 (Optimal policy: general case). Suppose the planner implements the optimal
policy given welfare weights α ≥ 0 and β ≥ 0. Then,

1. Inflation is given by

πt =
κλ(αΦ−Υ)

λΥ+ α

eωt − e−θψt

(θψ + ω)(θψ + ω)
ψ0 + eωtπ0, (175)

where initial inflation is given by

π0 =
κ

ω

 β
θψ+ω

(
κλ(αΦ−Υ)
λΥ+α

)2
ψ0

(ρ+θ+|ω|)
1

ρ+θ+θψ
+ α2Φ

α+λΥ
λψ0

ω+θψ
+ αλΥ

λΥ+α
|ω|ψ0

(ρ+θ+θψ)(ω+θψ)
+ αλΦ(b0 − bn)

α− κβ
ω(ρ+θ+|ω|)

κλ(αΦ−Υ)
λΥ+α

 .
(176)

2. Output gap is given by

xt = x0 − β
κ(1 + λΦ)

λΥ+ α
pt −

λΥ

λΥ+ α

ψ0 − ψt
θψ

, (177)

where pt =
∫ t
0
πsds, and the initial output gap is given by

αx0 =
β

θψ + ω

(
κλ(αΦ−Υ)

λΥ+ α

)2
ψ0

(ρ+ θ + |λ|)(ρ+ θ + θψ)

+ β
κλ(αΦ−Υ)

λΥ+ α

π0
ρ+ θ + |ω|

+
αλΥ

λΥ+ α

ψ0

ρ+ θ + θψ
. (178)

3. The government debt is given by

bt = −βκ(1 + λΦ)

λΥ+ α
pt +

α

λΥ+ α

ψ0 − ψt
θψ

. (179)
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We provide the proof of this proposition in Appendix B.

D. Extensions

D.1 Optimal policy with debt stabilizers and cost-push shocks

In this section, we generalize the optimal policy problem in two dimensions. First, we
allow for a positive debt stabilizer, γ > 0. Second, we introduce an exogenous cost-push
shock vt to the NKPC.

Implementability. Suppose that λh = 0, so the equilibrium dynamics is described by
the dynamic system:

π̇t = (ρ+ θ)πt − κxt − κΦλbt − vt, ẋt = rt − ρ, ḃt = rt − ρ− γbt + ψt, (180)

for a given path of real rates, the initial condition for the output gap x0, the evolution of
the fiscal shock ψt, and a cost-push shock vt.

Proposition 10 (Implementability). Given a path of real rates [rt]∞0 and an initial condition for
the output gap, x0, and for government debt, b0, then initial inflation is given by

π0 = κ

[
x0

ρ+ λ
+

λΦb0
ρ+ λ+ γ

+

∫ ∞

0

e−(ρ+λ)t

(
rt − ρ

ρ+ λ
+

λΦ

ρ+ λ+ γ
(rt − ρ+ ψt) + vt

)
dt

]
.

(181)

Proof. Integrating the law of motion of debt, we obtain

bt = e−γtb0 + r̂γ,t + ψ̂γ,t, (182)

where r̂γ,t ≡
∫ t
0
e−γ(t−s)(rs − ρ)ds and ψ̂γ,t ≡

∫ t
0
e−γ(t−s)ψsds.

Output gap is given by
xt = x0 + r̂t, (183)

where r̂t ≡ r̂0,t. Initial inflation is given by

π0 = κ

[
x0

ρ+ λ
+

λΦb0
ρ+ λ+ γ

+

∫ ∞

0

e−(ρ+λ)t
(
r̂t + λΦ(r̂γ,t + ψ̂γ,t) + vt

)
dt

]
. (184)

Applying integration by parts, we obtain the expression for initial inflation.
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Optimal policy. The optimal policy problem is given by

max
[πt,bt,xt,rt]∞0

−1

2

∫ ∞

0

e−(ρ+λ)t
[
α(xt − x∗)2 + βπ2

t + λΥ(bt − bn)2
]
dt+ ξxx0 + ξππ0. (185)

subject to

π̇t = (ρ+λ)πt−κxt−κΦλ(bt−bn)−vt, ẋt = rt−ρ, ḃt = rt−ρ−γbt+ψt, (186)

given the initial condition for inflation, where ξx and ξπ denote the penalty on the initial
value of output and inflation.

The Hamiltonian for this problem is given by

Ht = −1

2

[
α(xt − x∗)2 + βπ2t + λΥ(bt − bn)2

]
+ (ρ+ λ)ξxx0 + µx,t [rt − ρ] + µx,0(ρ+ λ)x0 (187)

+ µb,t [rt − ρ− γbt + ψt] + µπ,t [(ρ+ λ)πt − κxt − λκΦ(bt − bn)− vt]

+ (µπ,0 + ξπ)κ

[
x0 +

(
1 +

(ρ+ λ)λΦ

ρ+ λ+ γ

)
rt − ρ

ρ+ λ

]
. (188)

Optimality conditions. The dynamics of the co-states are given by

µ̇π,t − (ρ+ λ)µπ,t = βπt − (ρ+ λ)µπ,t (189)

µ̇b,t − (ρ+ λ)µb,t = λΥ(bt − bn) + λκΦµπ,t + γµb,t (190)

µ̇x,t − (ρ+ λ)µx,t = α(xt − x∗) + κµπ,t. (191)

The optimality condition for the interest rate is given by

µx,t + µb,t = −κ [µπ,0 + ξπ]

ρ+ λ

(
1 +

(ρ+ λ)λΦ

ρ+ λ+ γ

)
. (192)

The optimality condition for the initial value of the output gap is given by

(ρ+ λ)(µx,0 + ξx) + κ(µπ,0 + ξπ) = 0. (193)

Real interest rates. The next proposition gives the real interest rate.

Proposition 11 (Real interest rate). The real interest rate is given by

rt − ρ = −βκ(1 + λΦ)

λΥ+ α
πt −

λΥ

λΥ+ α
ψt −

γ

λΥ+ α
[(ρ+ λ+ γ)µb,t + λκΦµπ,t − λΥbn] . (194)

Proof. The optimality condition for the interest rate implies that µ̇b,t + µ̇x,t = 0. From the
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law of motion of the co-states, we obtain

α(xt − x∗) + λΥ(bt − bn) = −κ(1 + λΦ)µπ,t − γµb,t + κ

(
1 +

(ρ+ λ)λΦ

ρ+ λ+ γ

)
(µπ,0 + ξπ). (195)

Rearranging the expression above, we obtain

α(xt−x∗)+λΥ(bt−bn) = κ(1+λΦ) (µπ,0 − µπ,t)−γ
[
µb,t +

κλΦ

ρ+ λ+ γ
µπ,0

]
+κ

(
1 +

(ρ+ λ)λΦ

ρ+ λ+ γ

)
ξπ.

(196)

Differentiating the expression above, we obtain

α(rt − ρ) + λΥ(rt − ρ+ ψt − γbt) = −βκ(1 + λΦ)πt − γµ̇b,t. (197)

Rearranging the expression above, and using the dynamics for µb,t, we obtain the real
interest rate.

Dynamic system. Equilibrium dynamics under the optimal policy satisfies the dynamic
system:

π̇t

ẋt

ḃt

µ̇b,t

µ̇π,t


=



ρ+ λ −κ −κΦλ 0 0

−β̂ 0 0 −γ(ρ+λ+γ)
λΥ+α − γκλΦ

λΥ+α

−β̂ 0 −γ −γ(ρ+λ+γ)
λΥ+α − γκλΦ

λΥ+α

0 0 λΥ ρ+ λ+ γ κλΦ

β 0 0 0 0





πt

xt

bt

µb,t

µπ,t


+



0.0

− λΥ
λΥ+α

α
λΥ+α

0.0

0.0


ψt+



−1

0

0

0

0


vt+



κλΦ

γλΥ
λΥ+α

γλΥ
λΥ+α

−λΥ

0


bn,

(198)

where β̂ ≡ β κ(1+λΦ)
λΥ+α

, given the boundary conditions:

µx,0 + ξx = − κ

ρ+ λ
(µπ,0 + ξπ), µb,0 − ξx = − κλΦ

ρ+ λ+ γ
(µπ,0 + ξπ). (199)

Proposition 12 (Dynamic system). Let V and Λ denote the matrix of eigenvectors and a diag-
onal matrix with the eigenvalues of the dynamic system (198), respectively, and denote the vector
of endogenous variables by Zt = [πt, xt, bt, µb,t, µπ,t]

′. Assume that V is diagonalizable with real
eigenvalues. Then, Zt is given by

Zt = V1z1,t + V2z2,t, (200)

where V = [V1 V2], Λ = diag(Λ1,Λ2), Λ1 is a diagonal matrix with positive eigenvalues, Λ2 is a
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diagonal matrix with non-positive eigenvalues, and

z1,t = −
∫ ∞

t

exp (−Λ1(s− t))
[
uψ1ψs + uv1vs + un1b

n
]
ds, (201)

and

z2,t = exp (Λ2t) z2,0 +

∫ t

0

exp (Λ2(t− s))
[
uψ2ψs + uv2vs + un2b

n
]
ds. (202)

Proof. Let Zt = [πt, xt, bt, µb,t, µπ,t]
′, so we can write the system above in matrix form:

Żt = AZt + Uψψt + U vvt + Unbn. (203)

Assuming the matrix A is diagonalizable, we can write the eigendecomposition A =

V ΛV −1 and obtain a decoupled system under new coordinates:

żt = Λzt + uψψt + uvvt + unbn, (204)

where zt = V −1Zt and uj = V −1U j , for j ∈ {ψ, v, n}. Let zt = [z′1,t, z
′
2,t]

′, where z1,t

is associated with the positive eigenvalues, and z2,t is associated with the non-positive
eigenvalues (assuming the eigenvalues are real-valued). Solving forward the differential
equation for z1,t, we obtain

z1,t = −
∫ ∞

t

exp (−Λ1(s− t))
[
uψ1ψs + uv1vs + un1b

n
]
ds. (205)

When ψt is exponentially decaying, we obtain

z1,t = − [Λ1 + θψI]
−1 uψ1ψt − [Λ1 + θvI]

−1 uv1vt − Λ−1
1 un1b

n. (206)

Solving backward the differential equation for z2,t, we obtain

z2,t = exp (Λ2t) z2,0 +

∫ t

0

exp (Λ2(t− s))
[
uψ2ψs + uv2vs + un2b

n
]
ds. (207)

When ψt is exponentially decaying, we obtain

z2,t = exp (Λ2t) z2,0 + [Λ2 + θψI]
−1 [exp (Λ2t)− exp (−θψIt)]uψ2ψ0

+ [Λ2 + θvI]
−1 [exp (Λ2t)− exp (−θvIt)]uv2v0 + Λ−1

2 [exp (Λ2t)− I]un2b
n. (208)
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Rotating the system back to the original coordinates, we obtain

Zt = V1z1,t + V2z2,t. (209)

The vector z1,t captures the dependence on the exogenous shocks, while z2,0 captures
the effect of past promises.

Boundary conditions. The next proposition characterizes the boundary conditions

Proposition 13 (Boundary conditions). The optimality condition for x0 and for the interest rate
evaluated at zero are given:

κξπ
ρ+ λ

+ ξx =

∫ ∞

0

e−(ρ+λ)t

[
α(xt − x∗) +

κβ

ρ+ λ
πt

]
dt, (210)

κλΦξπ
ρ+ λ+ γ

− ξx =

∫ ∞

0

e−(ρ+λ+γ)t

[
λΥ(bt − bn) +

κλΦβπt
ρ+ λ+ γ

]
dt. (211)

Proof. The boundary conditions can be written as

κ

ρ+ λ
(µπ,0 + ξπ) + ξx =

∫ ∞

0

e−(ρ+λ)t [α(xt − x∗) + κµπ,t] dt = −µx,0 (212)

κλΦ

ρ+ λ+ γ
(µπ,0 + ξπ)− ξx =

∫ ∞

0

e−(ρ+λ+γ)t [λΥ(bt − bn) + κλΦµπ,t] dt = −µb,0, (213)

Using the fact that µπ,t = µπ,0 +
∫ t
0
βπsds, we obtain the two boundary conditions.

To obtain µx,0 = 0, the value of the co-state in the timeless perspective, the following
condition must be satisfied:

ξx = − κξπ
ρ+ λ

. (214)

This implies that −µb,0 is given by[
κλΦ

ρ+ λ+ γ
+

κ

ρ+ λ

]
ξπ =

∫ ∞

0

e−(ρ+λ+γ)t

[
λΥ(bt − bn) +

κλΦβπt
ρ+ λ+ γ

]
dt. (215)

Irrelevance of µπ,0. We show next that the system is independent of µπ,0, which will
allow us to normalize it to zero. Define the adjusted co-states:

µ̃π,t ≡ µπ,t−µπ,0, µ̃x,t ≡ µx,t+
κ

ρ+ λ
µπ,0, µ̃b,t ≡ µb,t+

κλΦ

ρ+ λ+ γ
µπ,0. (216)
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The law of motion of the adjusted co-states is given by

˙̃µπ,t = βπt (217)
˙̃µb,t − (ρ+ λ+ γ)µ̃b,t = λΥ(bt − bn) + λκΦµ̃π,t (218)

˙̃µx,t − (ρ+ λ)µ̃x,t = α(xt − x∗) + κµ̃π,t. (219)

The optimality condition for the interest rate is then given by

µ̃x,t + µ̃b,t = − κξπ
ρ+ λ

(
1 +

(ρ+ λ)λΦ

ρ+ λ+ γ

)
. (220)

The optimality condition for the initial value of the output gap is given by

(ρ+ λ)(µ̃x,0 + ξx) + κ(µ̃π,0 + ξπ) = 0. (221)

The dynamic system for the equilibrium variables can be equivalently written in terms
of the adjusted co-states (µ̃π,t, µ̃x,t, µ̃b,t). As µ̃π,0 = 0, we can assume that µπ,0 = 0 without
loss of generality.

Determination of initial conditions. We have three initial conditions for the system
above: µx,0 = 0, µπ,0 = 0, and the initial value of debt b0. it remains to write µx,0 in terms
of the remaining variables. The output gap can be written as

xt = Vx,1z1,t + Vx,2z2,t (222)

The average value of z1,t is given by

z1 = (ρ+λ)

∫ ∞

0
e−(ρ+λ)tz1,tdt = − [Λ1 + θψI]

−1 uψ1
(ρ+ θ)ψ0

ρ+ θ + θψ
−[Λ1 + θvI]

−1 uv1
(ρ+ θ)vt
ρ+ θ + θv

−Λ−1
1 un1b

n.

(223)

The average value of z2,t is given by

z2 = (ρ+ θ)

∫ ∞

0

e−(ρ+θ)tz2,tdt =

[
I − 1

ρ+ θ
Λ2

]−1

z2,0 + z̃2, (224)
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where

z̃2,0 = [Λ2 + θψI]
−1

[[
I − 1

ρ+ θ
Λ2

]−1

− ρ+ θ

ρ+ θ + θψ
I

]
uψ2ψ0

+ [Λ2 + θvI]
−1

[[
I − 1

ρ+ θ
Λ2

]−1

− ρ+ θ

ρ+ θ + θv
I

]
uv2v0 + Λ−1

2

[[
I − 1

ρ+ θ
Λ2

]−1

− I

]
un2b

n

(225)

The optimality condition for x0 can be written as follows:

0 = α(x− x∗) +
κβ

ρ+ θ
π, (226)

where x = (ρ + θ)
∫∞
0
e−(ρ+θ)txtdt and π = (ρ + θ)

∫∞
0
e−(ρ+θ)tπtdt. The other boundary

conditions can be written as

0 = Vµπ1z1,0 + Vµπ2z2,0, b0 = Vb1z1,0 + Vb2z2,0. (227)

Let’s assume that the system has two positive eigenvalues and three non-positive
eigenvalues. Then, the z2,0 is a three-dimensional vector that can be determined using
the initial conditions for µx,t, µπ,t, and bt:

αx∗

0

b0


︸ ︷︷ ︸

d0

=


(
αVx2 +

κβ
ρ+θ

Vπ2

) [
I − 1

ρ+θ
Λ2

]−1

Vµπ2

Vb2


︸ ︷︷ ︸

D

z2,0 + d1, (228)

where

d1 =


αVx1 +

κβ
ρ+θ

Vπ1

Vµπ1

Vb1

 z1,0 +

(
αVx2 +

κβ
ρ+θ

Vπ2

)
z̃2,0

0

0

 . (229)

The initial condition for z2,t is then given by

z2,0 = D−1 [d0 − d1] . (230)
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(a) Inflation (b) Output gap

(c) Real rates (d) Government debt

Figure 12: Optimal policy with a positive debt stabilizer (γ > 0)

Numerical illustration. We consider next a numerical illustration of the optimal policy
with a positive debt stabilizer, γ > 0. Figure 12 shows the equilibrium dynamics under
the optimal policy. In the short-run, the behavior of output, inflation, debt, and real rates
mimic the behavior observed in the case γ = 0 (see Figure 5). Output gap and inflation are
initially positive, and debt increases over time. Moreover, a hawkish central bank initially
has lower levels of inflation, real rates, and debt, with a higher output gap. Eventually,
the debt stabilizer starts to bring government debt back to its steady-state level, causing
the output gap to also revert to the steady state. Therefore, the version of the model with
a debt stabilizer generates similar results to the case discussed in Section 4, except that
variables eventually revert to the steady state.

D.2 Optimal policy with discretion

Optimal policy with finite planning horizon. Consider a planning with a finite plan-
ning horizon. We assume that a new planner takes over with a Poisson intensity λ. The
current planner takes the actions of future decision-makers as given. This ensures that
the Euler equation is satisfied even after a new planner takes over. Let Pt(bt) denote the
value of a planner at period t with a given level of government debt, and P∗(b∗) denotes
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the value of a planner in the inflationary-finance phase. The planner’s objective is given
by

P0(b0) = E0

[
−1

2

∫ τ

0

e−ρt
[
αx2t + βπ2

t

]
dt+ e−ρτ P̃τ (bτ )

]
, (231)

where τ denotes the random time the economy switches to either the inflationary-finance
phase, so the planner’s value becomes P̃τ (bτ ) = P∗(bτ ), or a new planner’s take over, so
the planner’s value is P̃τ (bτ ) = Pτ (bτ ). The density of τ is given by (λ + λ)e−(λ+λ)t and,
conditional on switching, the probability of moving to the inflationary-finance phase is
λ

λ+λ
, while the probability of a new planner taking over is given by λ

λ+λ
(see e.g. Cox and

Miller (1977) for a derivation).
Using the density of τ , we can then express P0(x0, b0) as follows:

P0(b0) = −1

2

∫ ∞

0

e−(ρ+λ+λ)t
[
αx2t + βπ2

t + λΥ(bt − bn)2
]
dt+

∫ ∞

0

e−(ρ+λ+λ)tλPt(bt)dt. (232)

The planner’s problem consists of maximizing the objective above subject to the con-
straints

π̇t = (ρ+ λ)πt − κxt − λκΦ(bt − bn), ḃt = rt − ρ+ ψt, ẋt = rt − ρ.

We also include a penalty on π0 and x0, as in the case with full commitment.

Optimality conditions The optimality conditions are given by

µ̇π,t − (ρ+ λ+ λ)µπ,t = βπt − (ρ+ λ)µπ,t (233)

µ̇b,t − (ρ+ λ+ λ)µb,t = λΥ(bt − bn)− λPb,t(bt) + λκΦµπ,t (234)

µ̇x,t − (ρ+ λ+ λ)µx,t = αxt + κµπ,t, (235)

where Pb,t(bt) denotes the partial derivative of Pt(bt) with respect to debt.
The optimality condition for the interest rate is given by

µx,t + µb,t = −ξ, (236)

where ξ ≡ κ(1+λΦ)
ρ+θ

ξπ.
The optimality condition for x0 is given by

µx,0 = 0. (237)
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Standard envelope arguments imply that

µb,t = Pb,t(bt). (238)

The discretion limit. Consider the limit as λ → ∞, so each planner has commitment
only over an infinitesimal amount of time. In the limit, the co-states on πt and xt are given
by

µπ,t = 0, µx,t = 0. (239)

Integrating the expression for µx,t forward, we obtain

µx,t = −
∫ ∞

t

e−(ρ+λ+λ)(s−t) [αxs + κµπ,s] ds⇒ lim
λ→∞

λµx,t = −αxt, (240)

using the fact that limλ→∞ µπ,t = 0. Hence, from the optimality condition for x0, we obtain
x0 = 0. Differentiating the optimality condition for the interest rate with respect to time,
we obtain

(ρ+ λ+ λ)ξ = αxt + λΥ(bt − bn)− λµb,t + κ(1 + λΦ)µπ,t, (241)

where we used the envelope condition for bt
Given µb,t = −ξ − µx,t, and combining the previous two expressions, we obtain

(ρ+ λ)ξ = λΥ(bt − bn). (242)

Therefore, the interest rate is given by

rt − ρ = −ψt. (243)

The case of partial commitment. In the case of discretion, planner’s do not take into
account promises made by prior planners. Hence, each planner sets a new value of xt as
they take control, and promise that output gap will evolve according to the Euler equa-
tion in the future. As we reduce the planning horizon to zero, each planner chooses the
value of the output gap regardless of the path of interest rates. We consider next the case
of partial commitment, where the planner has to respect past promises made about the
output gap. In this case, the output gap must satisfy the Euler equation at every point in
time, except at t = 0 when news about the shock arrives.
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In this case, the planner’s objective is given by

P0(x0, b0) = −1

2

∫ ∞

0

e−(ρ+λ+λ)t
[
αx2t + βπ2

t + λΥ(bt − bn)2
]
dt+

∫ ∞

0

e−(ρ+λ+λ)tλPt(xt, bt)dt,

(244)
and we impose a penalty on π0, but not on x0, as the initial output gap is not free.

The optmality conditions are now given by

µ̇π,t − (ρ+ λ+ λ)µπ,t = βπt − (ρ+ λ)µπ,t (245)

µ̇b,t − (ρ+ λ+ λ)µb,t = λΥ(bt − bn)− λPb,t(xt, bt) + λκΦµπ,t (246)

µ̇x,t − (ρ+ λ+ λ)µx,t = αxt + κµπ,t − λPx,t(xt, bt). (247)

The optimality condition for the interest rate is the same as under discretion, and the
envelope conditions for output gap and debt are given by

µx,t = Px,t(xt, bt), µb,t = Pb,t(xt, bt). (248)

Differentiating the optimality condition for the interest rate with respect to time, we
obtain

(ρ+ λ+ λ)ξ = αxt + λΥ(bt − bn)− λ(µb,t + µx,t) + κ(1 + λΦ)µπ,t, (249)

where we used the envelope conditions.
Taking the limit as λ→ ∞, we obtain

(ρ+ λ)ξ = αxt + λΥ(bt − bn) ⇒ rt − ρ = − λΥ

λΥ+ α
ψt. (250)

In period t = 0, the planner is allowed to choose x0, which must satisfy the condition:

µx,0 = 0 ⇒ 0 =

∫ ∞

0

e−(ρ+λ)tαxtdt = 0, (251)

where we used the fact that µπ,t = 0 as λ → ∞. Therefore, optimal policy with partial
commitment coincides with the optimal policy with commitment for a dovish central
bank, that is, when β = 0.

Taking the limit of a discrete-time economy. Welfare is measured by

∞∑
t=0

(
e−ρ∆t

)t [
αx2t + βπ2

t

]
∆t. (252)
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The NKPC is given by
πt = e−ρ∆tEt [πt+∆t] + (κxt + ut)∆t. (253)

Under discretion, the planner’s problem is given by

max
xt,πt

−1

2

[
αx2t + βπ2

t

]
∆t, (254)

subject to
πt = e−ρ∆tEt [πt+∆t] + (κxt + ut)∆t, (255)

taking as given Etπt+∆t.
The optimal solution is given by

xt = −κβ
α
πt∆t. (256)

D.3 Optimal policy under the timeless perspective

The dynamics under the optimal policy are characterized by the following conditions:

π̇t = (ρ+ λ)πt − κxt − λκΦ(bt − bn) (257)

ḃt = rt − ρ− γ(bt − bn) + ψt (258)

ẋt = rt − ρ+ θhxt − θ∗h(bt − bn) (259)

µ̇π,t = βπt (260)

µ̇b,t = (ρ+ λ)µb,t + λΥ(bt − bn) + κλΦµπ,t (261)

µ̇x,t = (ρ+ λ)µx,t + αxt + κµπ,t, (262)

where the real rate is given by

rt − ρ = −βκ(1 + λΦ)

λΥ+ α
πt −

λΥ

λΥ+ α
ψt, (263)

given the initial value of debt, b0, and the boundary conditions µx,0 = µπ,0 = 0.
Consider the case without a fiscal shock, ψt = 0, and denote the co-states in this case

with no shocks by µnsx,t and µnsπ,t. The optimal policy under the timeless perspective cor-
responds to the solution to the system above when we replace the initial conditions by
the long-run values of these multipliers: µx,0 = limt→∞ µnsx,t and µπ,0 = limt→∞ µnsπ,t (see
Giannoni and Woodford (2017) for a discussion in the context a general model). This is
equivalent to the problem of a planner who started its planning in a distant past, so the
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multipliers had time to converge to their long-run values.
Even without shocks, the limits limt→∞ µnsx,t and limt→∞ µnsπ,t will not be equal to zero,

provided that b0 ̸= bn. However, in the case b0 = bn, the solution to the system above in
the absence of shocks is simply πt = xt = bt = µπ,t = µx,t = µb,t = 0. Hence, we have that
limt→∞ µnsx,t = 0 and limt→∞ µnsπ,t = 0, so the boundary conditions for the problem under
the timeless perspective coincide with the time-zero commitment solution.
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E. Historical Shock Decomposition and Taylor

Counterfactual

For the historical shock decomposition, we construct the discrete version analogue of
the model in Section 2. In addition to the fiscal shock already analyzed, we incorporate
three additional shocks into the model. First, we include a monetary shock that allows the
monetary authority to deviate from the prescriptions of the interest rate rule. We calibrate
the Taylor coefficient on the lower end of its plausible range to minimize the importance
of these shocks in the conclusion. Second, we include a standard-cost push shock, to
capture movements in the inflation rate that are orthogonal to the evolution of debt. It
represents sectoral reallocations and supply bottlenecks, as experienced during the pan-
demic. This shock is identified through the Phillips curve implied by the model. Third,
we add a “bond-valuation” shock to the return on government debt. This shock is meant
to capture the effect on the one-period holding return on government debt of revaluation
effects, risk premium movements, changes in the maturity structure, and other unmod-
eled dimensions that affect the government’s budget constraint. The shock is directly
extracted from the government debt path, given the fiscal rule, the primary deficits and
the path of nominal rates. Since shocks are inferred directly from the data series, the
Kalman filter optimizes the initial conditions to best fit the shock decomposition—the
initial conditions’ quantitative contribution is minor.

E.1 The Model

The model can be characterized by the following equations:

1. IS curve
xt = xt+1 − σ (it − πt+1 − ρ)

2. New Keynesian Phillips Curve (NKPC)

πt = β [(1− λf ) πt+1 + λfκΦbt+1] + κxt + µt

3. Interest rate rule
it = ρ+ ρi(it−1 − ρ) + ϕππt + umt

4. Government debt evolution

bt = (1− γ) bt−1 + rtbn + uft
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5. Primary surplus
ψt = uft − (ρ+ γ) bt−1

6. One-period holding return on government debt

rt = (it − πt − ρ) + urt ,

where µt denotes the cost-push shock, umt denotes the monetary shock, uft denotes the
fiscal shock, and urt denotes the bond-valuation shock. Note that in the data we do not
observe the fiscal shock directly but through its effect on the primary surplus. Thus, we
denote ψt the primary surplus, which includes the fiscal shock and the automatic adjust-
ment of transfers to changes in the stock of debt. Finally, we assume that all disturbances
follow an AR(1) process.

E.2 The Data

For the exercise, we take the dynamics of inflation, the primary surplus, the stock of debt,
and the nominal rate as observables. The inflation rate is measured as the growth rate of
the GDP deflator (NIPA Table 1.1.7 line 1). The primary surplus is the difference between
government receipts (NIPA Table 3.1 line 1) and total expenditures (NIPA Table 3.1 line
20) net of interest payments (NIPA Table 3.1 line 12 - NIPA Table 3.1 line 27), divided by
nominal GDP (NIPA Table 1.1.5 line 1). The stock of debt is the market value of govern-
ment debt held by the private sector from Hall, Payne and Sargent (2018) plus reserves of
depository institutions (Fred TOTRESNS). Finally, the nominal rate is the federal funds
effective rate (Fred DFF).

Since we look at primary surplus over GDP in the data, we nee to adjust our fiscal
shock to include movements in GDP. To account for this, we combine the growth compo-
nent of GDP into the purely fiscal component. Thus, our fiscal shock is a composite of an
exogenous transfer shock and the contribution of growth to the debt-to-GDP ratio.

Formally, we have that the government’s budget constraint is given by

Ḃt = (it − πt)Bt − (ρ+ γ)Bt +Ψt.

Dividing by quarterly output, we get

Ḃt

Xt

− Bt

Xt

Ẋt

Xt

+
Bt

Xt

Ẋt

Xt

= (it − πt)
Bt

Xt

− (ρ+ γ)
Bt

Xt

+
Ψt

Xt

.

81



Let bt ≡ Bt
Xt

and gt ≡ Ẋt
Xt

, to get

ḃt = (it − πt) bt − (ρ+ γ) bt +

(
Ψt

Xt

− btgt

)
︸ ︷︷ ︸

≡ψt

.

Let b̂t ≡ bt − bn and ψ̂t ≡ ψt − ψ. We assume that γ is such that γ = ψ
bn

. Then

˙̂
bt = (it − πt − ρ) b̂t︸ ︷︷ ︸

=O(||ψt||2)

+(it − πt − ρ) bn − γb̂t + ψ̂t,

or
˙̂
bt ≈ (it − πt − ρ) bn − γb̂t + ψ̂t.

E.3 Connection to the Textbook Model

The system of equations characterizing the equilibrium of our economy is isomorphic to
the system in the textbook model, with the difference that the expectations include the
possibility of a monetary-fiscal reform. To see this, assume that the economy starts in the
fiscal-expansion phase. The system of equations characterizing the equilibrium is given
by

xIt = Eh
t [xt+∆t]− (it − Eh

t [πt+∆t]− ρ)∆t

πIt = βEf
t [πt+∆t] + κxIt∆t

it = ρ+ ϕππ
I
t + ut

bt = bt−∆t + (it−∆t − πIt − ρ)bn − γbt−∆t∆t+ ψt,

where {xIt , πIt } denote the output gap and inflation in the fiscal-expansion phase, re-
spectively, {Eh

t , E
f
t } denote the households’ and firms’ expectation operator, respectively,

{xt+∆t, πt+∆t} are random variables representing the output gap and inflation in period
t+∆t, and the time period is of length ∆t.

If λh = λf = 0, then xt+∆t = xIt+∆t and πt+∆t = πIt+∆t. Assuming that ∆t = 1, the system
above becomes the textbook system of difference equations. In contrast, with λh, λf > 0

we have

Eh
t [xt+∆t] = (1− λh∆t)x

I
t+∆t + λh∆tx

II
t+∆t,

Ej
t [πt+∆t] = (1− λj∆t)π

I
t+∆t + λj∆tπ

II
t+∆t, for j ∈ {h, f},
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where {xIIt+∆t, π
II
t+∆t} denote the output gap and inflation in Phase II, respectively.31 Re-

moving the superscript I , and using that xIIt+∆t = bt+∆t − bn and πIIt+∆t = κΦ(bt+∆t − bn),
the system becomes

xt = (1− λh∆t)xt+∆t − (it − ((1− λh∆t)πt+∆t + λh∆tκΦ(bt+∆t − bn))− ρ)∆t+ λh∆t(bt+∆t − bn)

πt = β(1− λf∆t)πt+∆t + [κxt + βλfκΦ(bt+∆t − bn)]∆t

it = ρ+ ϕππt + ut

bt = bt−∆t + [(it−∆t − πt − ρ)bn − γbt−∆t + ψt] ∆t,

In the limit as ∆t→ 0, it simplifies to

ẋt = it − πt − rnt + λhxt

π̇t = (ρ+ λf )πt − κxt − µt

it = ρ+ ϕππt + ut

ḃt = (it − πt − ρ)bn − γbt + ψt,

where rnt ≡ ρ + λh(bt − bn) and µt ≡ βλfκΦ(bt − bn), and we used that β = 1
1+ρ∆t

. These
expressions make it clear that, through the expectation of a reform, the system of equa-
tions characterizing equilibrium changes relative to the textbook version in the following
ways: i) the Euler equation features “discounting,” ii) the natural rate is endogenous and
depends on the level of debt, iii) the NKPC also features “discounting,” iv) the NKPC
features a cost-push shock that depends on the stock of debt.

31Note that we are assuming, for simplicity, perfect foresight conditional on the regime.

83


